主要用途:圆偏振荧光在发光材料、生物蛋白、信息显示存储、电子学、非线性光学等领域有广泛的用途和应用前景,引起科学家极大的关注和兴趣。采用圆偏振荧光光谱仪可提供分子激发态的结构信息,表征聚合物结构,成为研究有机化合物的立体构型的一个重要方法。工作原理:光是一种电磁波,可用振动的电场和与之垂直的磁场来描述,若光波在其传播途径中具体某一点上只有一个振动方向,但振动方向随光波的传播而有规律的偏转一定角度但振幅不变,其电场矢量末端的运动轨迹为螺旋状,该螺旋的横截面为圆形,这种偏振光为圆偏振光。人们在圆二色的基础上,发现圆偏振荧光的左、右圆偏振光的强度不同。通常以左、右圆偏振荧光的强度差CPL=△F=FL-FR,作为圆偏振荧光的量度。之前文献报道的圆偏振荧光检测都是在相关科研工作者自己设计和建造的仪器上进行的。直到1972年以色列魏茨曼科技学院Steinberg和Gafni(SG)提出图一A所示的圆偏振荧光调制测量方法,基本组成部分为:激发源、单色器、样品、光学弹性调制器、偏光片、发射单色器、光电倍增管、锁相放大器及计算机。该方法将调制后的光电信号和PEM光学弹性调制器信号输入给锁相放大器,通过二者频率与相位锁相从荧光中提取圆偏振荧光。1982年荷兰莱顿大学的Schippers,vandenBeukle和Dekkers(SBD)提出了图一B所示的圆偏振荧光测量方法,该方法利用光子计数取代锁相放大器,解决了锁相放大器的输出不稳定问题。其后复杂蛋白结构测量主要采用的是该方法,但是对于弱的圆偏振荧光测量还是速度很慢。1992-1995年期间,随着TDC时间数字转换器等电子技术的发展,美国密西根大学的Schauerte,Steel,和Gafni(SSG)进一步提出了图一C所示的圆偏振荧光直接相减测量方法。该方法采用DGG延迟选通脉冲发生器,分别测量△F=FL-FR公式中的FL左圆偏振荧光和FR右圆偏振荧光,两者相减直接得到真正的圆偏振荧光△F,利用公式glum=2(FL-FR)/(FL+FR)求得不对称因子。该方法同时解决了以上两种方法中锁相环输出不稳定与测量速度慢的问题,使用该方法商业化生产的圆偏振荧光光谱仪主要是美国Olis公司圆偏振荧光光谱仪DSM-172C,DSM-245,RSM-1000。图一圆偏振荧光光谱仪原理图