龙源期刊网突破衍射极限的成像方法综述作者:乌拉郑玉祥来源:《光学仪器》2017年第01期摘要:“衍射极限”实际上不是一个真正的障碍,除非处理远场和定位精度。这种衍射障碍并不是坚不可摧的,可以利用一些智能技术来突破光学衍射极限。讨论了四种技术,近场扫描光学显微镜(NSOM)法,受激发射损耗(STED)显微镜法,光激活定位显微镜(PALM)法或随机光学重建显微镜(STORM)法和结构照明显微镜(SIM)法,并且介绍了各自的基本原则与优劣。NSOM利用纳米级探测器检测通过光纤的极小汇聚光斑,从而获得单个像素的分辨率;PALM和STORM利用荧光探针,实现暗场和荧光的转换,从而观察到极小的荧光团;SIM则是利用栅格图案与样品叠加成像来实现。其中,STORM具有相对较高的潜力,能够更为有效地突破衍射极限。关键词:衍射极限;近场显微镜;三维显微中图分类号:O43文献标志码:Adoi:10.3969/j.issn.10055630.2017.01.014AreviewonimagingmethodstobreakthediffractionlimitRamzanUllah1,2,ZHENGYuxiang1(1.ShanghaiUltraPrecisionOpticalManufacturingEngineeringCenter,DepartmentofOpticalScienceandEngineering,FudanUniversity,Shanghai200433,China;2.DepartmentofPhysics,COMSATSInstituteofInformationTechnology,Islamabad45550,Pakistan)Abstract:Notoriousterm'diffractionlimit'isnotactuallyatruebarrierunlesswearedealingwithfarfieldandlocalizationprecision.Thisdiffractionbarrierisnotimpenetrableandcanbebrokenwithsomeintelligenttechniques.Wediscussherefourpowerfultechniques,nearfieldscanningopticalmicroscopy(NSOM),stimulatedemissiondepletion(STED)microscopy,photoactivatedlocalizationmicroscopy(PALM)&stochasticopticalreconstructionmicroscopy(STORM)andstructuredilluminationmicroscopy(SIM),alongwiththeirunderlyingprinciplestogetherwithprosandcons.NSOMusesananometerscaledetectororsourcewhichcompelsthelighttopass龙源期刊网,laserlightisfocusedintoasmallspotbytheobjectiveandasaresult,allfluorophoreswithinthisfocusedspotradiatefluorescence,whichisthengatheredbytheobjectiveandheadedtothedetectorwhereitformsasinglepixel.FluorescentprobesareemployedbySTORM/PALM,whichareabletotogglebetweendarkstatesandfluorescentsothatwitheverysnapshottaken,onlyatiny,opticallyresolvableportionofthefluorophoresisobserved.Structuredilluminationisawidefieldtechniqueinwhichagridpatternisproducedbytheinterferenceofdiffractionorderswhicharesuperimposedonthesamplewhiletakingimages.STORMhastherelativelyhighpotentialtoeffectivelybreaktheconventionaldiffractionbarrierwithfewerhurdles.Keywords:diffractionlimit;nearfieldmicroscopy;threedimensionalmicroscopyIntroductionAmicroscopeisadeviceusedtoseeobjectsinintricatedetailusuallyuptotheorderofnanoscale.Themainfactorindeterminingthequalityofamicroscopeisitsresolutionwhichisfundamentallyboundedbydiffractionlimit.Normally,determiningthediffractionlimitofanimagingsystemisbasedonAbbeandRayleighcriterions[1]whichinturndependonnumericalapertureofthelensandwavelengthoflightbeingused.Withtheadventofnewtechnologiesdifferenttypesofmicroscopesworkingbeyondthelimitofdiffraction,havebeendevelopedwhichincludeelectronmicroscopes[23]usingelectronsaswellasopticalmicroscopesusingsmartopticaltechniques.Eachtypehasitsownprosandcons.Wepresentashortreviewofsomeoftheseopticalmicroscopes.1Nearfieldscanningopticalmicroscopy(NSOM)NSOMsometimesabbreviatedasSNOMforScanningNearfieldScanningOpticalMicroscopywasfirstlysuggestedin1928[4].NSOMusesaveryinnovativeconcepttopenetratethediffractionbarrierwhichistouseadetectororsourcewhosesizeisinnanometerscale.NSOMcompelsthelighttopassthroughthetinytip(whoseaperturesizeisontheorderoftensofnanometers)ofafiber.Nowifthistipisbroughtveryclosetotheobject,theresolutionisnomorelimitedbythediffraction,butbythesizeofthetipapertureaselucidatedinFig1.Soitmeansthedistancebetweenthetipandobjectmustbemuchsmallerthanλ.Soitbreaksthefarfieldresolutionlimit.Proberesolutionismainlyquantifiedbythediameteroftheaperture[5].Withthepassageoftime,moreandmoreadvancedtechniqueshavebeendevelopedandsomeareevenspecifictothetypeofsample[6].Thistechniquehasrevolutionizedthefieldofmaterialcharacterizationespeciallyfornanomaterials[7].SobasicallyNSOM/SNOMutilizesthenearfieldcomponentoftheelectromagneticwavewhosepropagationislimitedtoveryshortdistanceasopposedtofarfieldlightwhichsmearsoutinfinitelyuntilabsorbed,refractedorscatteredwhateveristhecase.Thepropagationdistanceofanearfieldphotonisproportionaltothephysicaldimensionsofitssource;henceinordertobeobservablebythenearfield,theobjectshavetobeinverycloseproximityofthefield.Thedistancebetweenthetipandobjectmustbelessthanthedimensionsoftheapertureofthetip.Theamplitudeof龙源期刊网[8].SimilarlyanothertechniquecalledaperturelessnearfieldmicroscopyreachesbeyondtherangeofsimpleNSOM[9].1.1Advantages(1)NSOMoffersdirectrelationshipbetweensurfacenanofeaturesandopticalorelectroniccharacteristicsalongwithconcurrentmensurationofthetopographyaswellasopticalproperties(fluorescence).Fig.1SchematicdiagramofaNSOM(2)NSOMissubstantiallyeffectiveincharacterizingtheinhomogeneousmaterialsorsurfaces,likenanoparticles,polymerblends,poroussilicon,andbiologicalsystems[10].1.2Disadvantages(1)ThechiefdrawbacktoNSOMistherestrictednumberofphotonscomingoutofthetinytipandtheminisculecollectionefficiency.(2)Longscantimefo