考前冲刺十五天(10)1.如图,直线y=﹣x+b与反比例函数y=的图象相交于A(1,4),B两点,延长AO交反比例函数图象于点C,连接OB.(1)求k和b的值;(2)直接写出一次函数值小于反比例函数值的自变量x的取值范围;(3)在y轴上是否存在一点P,使S△PAC=S△AOB?若存在请求出点P坐标,若不存在请说明理由.kx25解:(1)将A(1,4)分别代入y=﹣x+b和得:4=﹣1+b,4=,解得:b=5,k=4;(2)一次函数值小于反比例函数值的自变量x的取值范围为:x>4或0<x<1,(3)过A作AM⊥x轴,过B作BN⊥x轴,kyx1k由(1)知,b=5,k=4,∴直线的表达式为:y=﹣x+5,反比例函数的表达式为:由,解得:x=4,或x=1,∴B(4,1),∴,∵,∴,1115(+)(14)3222AOBANMBSSANBMMN△四边形25PACAOBSS△△215352PACS△过A作AE⊥y轴,过C作CD⊥y轴,设P(0,t),∴S△PAC=OP•CD+OP•AE=OP(CD+AE)=|t|=3,解得:t=3,t=﹣3,∴P(0,3)或P(0,﹣3).1212122.如图,点C在以AB为直径的⊙O上,∠CBA=30°,点D在AB上由点A开始向点B运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.(1)如果CD⊥AB,求证:EF为⊙O的切线;(2)求证:CE=CF;(3)如果点F恰好落在弧BC上,请在备用图中画出图形,探究并证明此时EF与AB的关系.(1)证明:连接OC,如图2所示:∵∠ACB=90°,∠CBA=30°,∴∠CAB=60°,∵OA=OC,∴△AOC是等边三角形,∴∠OCA=60°,∵CD⊥AB,∴∠OCD=∠DCA=30°,∵点E与点D关于AC对称,∴CD=CE,∴∠ECA=∠DCA=30°,∴∠ECO=60°+30°=90°,∴EF为⊙O的切线;(2)证明:∵点E与点D关于AC对称,∴CE=CD,∴∠ECA=∠DCA,又∵DF⊥DE,∴∠CDF=90°﹣∠CDE=90°﹣∠E=∠F,∴CD=CF,∴CE=CF;(3)解:如图3所示:EF=AB,EF∥AB;理由如下:当点F恰好落在上时,此时点D与点O重合,由(2)得CE=OC,CF=OC,∴EF=2OC=AB,△OCF是等边三角形,∴∠F=∠COF=60°,∵OB=OC,∴∠OCB=∠B=30°,∴∠BOC=120°,∴∠BOF=60°,∴∠F=∠BOF,∴EF∥AB.BC3.如图1,矩形ABCD中,AB=4,AD=3,把矩形沿直线AC折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△DEC≌△EDA;(2)求DF的值;(3)如图2,若P为线段EC上一动点,过点P作△AEC的内接矩形PQMN,使点Q落在线段AE上,点M、N落在线段AC上,当线段PE的长为何值时,矩形PQMN的面积最大?并求出其最大值.(1)证明:∵四边形ABCD是矩形,∴AD=BC,AB=DC.由折叠可得:EC=BC,AE=AB,∴AD=EC,AE=DC.又DE=DE,∴△DEC≌△EDA.(2)解:∵四边形ABCD是矩形,∴∠DCA=∠BAC.由折叠可得∠EAC=∠BAC,∴∠EAC=∠DCA,∴AF=CF.设DF=x,则AF=CF=DC﹣DF=AB﹣DF=4﹣x.在Rt△ADF中,∵AD2+DF2=AF2,∴32+x2=(4﹣x)2,解得:x=.∴DF的值为.7878(3)解:过点E作EH⊥AC于点H,交QP于点G,设EP=x,如图2,则有EG⊥PQ.在Rt△AEC中,∵AE=AB=4,EC=BC=AD=3,∴AC=5.