向量知识点总结

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

高中数学高考总复习高三数学总复习九—向量—1—高中数学第五章-平面向量考试内容:向量.向量的加法与减法.实数与向量的积.平面向量的坐标表示.线段的定比分点.平面向量的数量积.平面两点间的距离、平移.考试要求:(1)理解向量的概念,掌握向量的几何表示,了解共线向量的概念.(2)掌握向量的加法和减法.(3)掌握实数与向量的积,理解两个向量共线的充要条件.(4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算.(5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件.(6)掌握平面两点间的距离公式,以及线段的定比分点和中点坐标公式,并且能熟练运用掌握平移公式.§05.平平面面向向量量知知识识要要点点1.本章知识网络结构2.向量的概念(1)向量的基本要素:大小和方向.(2)向量的表示:几何表示法AB;字母表示:a;坐标表示法a=xi+yj=(x,y).(3)向量的长度:即向量的大小,记作|a|.(4)特殊的向量:零向量a=O|a|=O.单位向量aO为单位向量|aO|=1.(5)相等的向量:大小相等,方向相同(x1,y1)=(x2,y2)2121yyxx(6)相反向量:a=-bb=-aa+b=0(7)平行向量(共线向量):方向相同或相反的向量,称为平行向量.记作a∥b.平行向量也称为共线向量.3.向量的运算高中数学高考总复习高三数学总复习九—向量—2—运算类型几何方法坐标方法运算性质向量的加法1.平行四边形法则2.三角形法则1212(,)abxxyyabba()()abcabcACBCAB向量的减法三角形法则1212(,)abxxyy()ababABBA,ABOAOB数乘向量1.a是一个向量,满足:||||||aa2.0时,aa与同向;0时,aa与异向;=0时,0a.(,)axy()()aa()aaa()abab//abab向量的数量积ab是一个数1.00ab或时,0ab.2.00||||cos(,)abababab且时,1212abxxyyabba()()()ababab()abcacbc2222||||=aaaxy即||||||abab4.重要定理、公式(1)平面向量基本定理e1,e2是同一平面内两个不共线的向量,那么,对于这个平面内任一向量,有且仅有一对实数λ1,λ2,使a=λ1e1+λ2e2.(2)两个向量平行的充要条件a∥ba=λb(b≠0)x1y2-x2y1=O.高中数学高考总复习高三数学总复习九—向量—3—(3)两个向量垂直的充要条件a⊥ba·b=Ox1x2+y1y2=O.(4)线段的定比分点公式设点P分有向线段21PP所成的比为λ,即PP1=λ2PP,则OP=111OP+112OP(线段的定比分点的向量公式).1,12121yyyxxx(线段定比分点的坐标公式)当λ=1时,得中点公式:OP=21(1OP+2OP)或.2,22121yyyxxx(5)平移公式设点P(x,y)按向量a=(h,k)平移后得到点P′(x′,y′),则PO=OP+a或.,kyyhxx曲线y=f(x)按向量a=(h,k)平移后所得的曲线的函数解析式为:y-k=f(x-h)(6)正、余弦定理正弦定理:.2sinsinsinRCcBbAa余弦定理:a2=b2+c2-2bccosA,b2=c2+a2-2cacosB,c2=a2+b2-2abcosC.(7)三角形面积计算公式:设△ABC的三边为a,b,c,其高分别为ha,hb,hc,半周长为P,外接圆、内切圆的半径为R,r.①S△=1/2aha=1/2bhb=1/2chc②S△=Pr③S△=abc/4R④S△=1/2sinC·ab=1/2ac·sinB=1/2cb·sinA⑤S△=cPbPaPP[海伦公式]⑥S△=1/2(b+c-a)ra[如下图]=1/2(b+a-c)rc=1/2(a+c-b)rb高中数学高考总复习高三数学总复习九—向量—4—[注]:到三角形三边的距离相等的点有4个,一个是内心,其余3个是旁心.如图:图1图2图3图4图1中的I为S△ABC的内心,S△=Pr图2中的I为S△ABC的一个旁心,S△=1/2(b+c-a)ra附:三角形的五个“心”;重心:三角形三条中线交点.外心:三角形三边垂直平分线相交于一点.内心:三角形三内角的平分线相交于一点.垂心:三角形三边上的高相交于一点.旁心:三角形一内角的平分线与另两条内角的外角平分线相交一点.⑸已知⊙O是△ABC的内切圆,若BC=a,AC=b,AB=c[注:s为△ABC的半周长,即2cba]则:①AE=as=1/2(b+c-a)②BN=bs=1/2(a+c-b)③FC=cs=1/2(a+b-c)综合上述:由已知得,一个角的邻边的切线长,等于半周长减去对边(如图4).特例:已知在Rt△ABC,c为斜边,则内切圆半径r=cbaabcba2(如图3).⑹在△ABC中,有下列等式成立CBACBAtantantantantantan.证明:因为,CBA所以CBAtantan,所以CBABAtantantan1tantan,结论!⑺在△ABC中,D是BC上任意一点,则DCBDBCBCABBDACAD222.证明:在△ABCD中,由余弦定理,有BBDABBDABADcos2222①在△ABC中,由余弦定理有BCABACBCABB2cos222②,②代入①,化简可得,DCBDBCBCABBDACAD222(斯德瓦定理)①若AD是BC上的中线,2222221acbma;ABCOabcIABCDEFIABCDEFrararabcaabcACBNEFDACB图5高中数学高考总复习高三数学总复习九—向量—5—②若AD是∠A的平分线,appbccbta2,其中p为半周长;③若AD是BC上的高,cpbpappaha2,其中p为半周长.⑻△ABC的判定:222bac△ABC为直角△∠A+∠B=22c<22ba△ABC为钝角△∠A+∠B<22c>22ba△ABC为锐角△∠A+∠B>2附:证明:abcbaC2cos222,得在钝角△ABC中,222222,00coscbacbaC⑼平行四边形对角线定理:对角线的平方和等于四边的平方和.)(22222bababa空间向量1.空间向量的概念:具有大小和方向的量叫做向量奎屯王新敞新疆注:⑴空间的一个平移就是一个向量奎屯王新敞新疆⑵向量一般用有向线段表示奎屯王新敞新疆同向等长的有向线段表示同一或相等的向量奎屯王新敞新疆⑶空间的两个向量可用同一平面内的两条有向线段来表示奎屯王新敞新疆2.空间向量的运算定义:与平面向量运算一样,空间向量的加法、减法与数乘向量运算如下baABOAOBbaOBOABA)(RaOP运算律:⑴加法交换律:abba⑵加法结合律:)()(cbacba⑶数乘分配律:baba)(3奎屯王新敞新疆共线向量表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平高中数学高考总复习高三数学总复习九—向量—6—行向量.a平行于b记作ba//.当我们说向量a、b共线(或a//b)时,表示a、b的有向线段所在的直线可能是同一直线,也可能是平行直线.4.共线向量定理及其推论:共线向量定理:空间任意两个向量a、b(b≠0),a//b的充要条件是存在实数λ,使a=λb.推论:如果l为经过已知点A且平行于已知非零向量a的直线,那么对于任意一点O,点P在直线l上的充要条件是存在实数t满足等式tOAOPa.其中向量a叫做直线l的方向向量.5.向量与平面平行:已知平面和向量a,作OAa,如果直线OA平行于或在内,那么我们说向量a平行于平面,记作://a.通常我们把平行于同一平面的向量,叫做共面向量奎屯王新敞新疆说明:空间任意的两向量都是共面的奎屯王新敞新疆6.共面向量定理:如果两个向量,ab不共线,p与向量,ab共面的充要条件是存在实数,xy使pxayb奎屯王新敞新疆推论:空间一点P位于平面MAB内的充分必要条件是存在有序实数对,xy,使MPxMAyMB或对空间任一点O,有OPOMxMAyMB①①式叫做平面MAB的向量表达式奎屯王新敞新疆7奎屯王新敞新疆空间向量基本定理:如果三个向量,,abc不共面,那么对空间任一向量p,存在一个唯一的有序实数组,,xyz,使pxaybzc奎屯王新敞新疆推论:设,,,OABC是不共面的四点,则对空间任一点P,都存在唯一的三个有序实数,,xyz,使OPxOAyOBzOC奎屯王新敞新疆8奎屯王新敞新疆空间向量的夹角及其表示:高中数学高考总复习高三数学总复习九—向量—7—已知两非零向量,ab,在空间任取一点O,作,OAaOBb,则AOB叫做向量a与b的夹角,记作,ab;且规定0,ab,显然有,,abba;若,2ab,则称a与b互相垂直,记作:ab.9.向量的模:设OAa,则有向线段OA的长度叫做向量a的长度或模,记作:||a.10.向量的数量积:ab||||cos,abab.已知向量ABa和轴l,e是l上与l同方向的单位向量,作点A在l上的射影A,作点B在l上的射影B,则AB叫做向量AB在轴l上或在e上的正射影.可以证明AB的长度||||cos,||ABABaeae.11.空间向量数量积的性质:(1)||cos,aeaae.(2)0abab.(3)2||aaa.12.空间向量数量积运算律:(1)()()()ababab.(2)abba(交换律)(3)()abcabac(分配律).空间向量的坐标运算一.知识回顾:(1)空间向量的坐标:空间直角坐标系的x轴是横轴(对应为横坐标),y轴是纵轴(对应为纵轴),z轴是竖轴(对应为竖坐标).①令a=(a1,a2,a3),),,(321bbbb,则),,(332211babababa))(,,(321Raaaa332211babababaa∥)(,,332211Rbababab332211bababa0332211babababa222321aaaaaa(用到常用的向量模与向量之间的转化:aaaaaa2)232221232221332211||||,cosbbbaaababababababa高中数学高考总复习高三数学总复习九—向量—8—②空间两点的距离公式:212212212)()()(zzyyxxd.(2)法向量:若向量a所在直线垂直于平面,则称这个向量垂直于平面,记作a,如果a那么向量a叫做平面的法向量.(3)用向量的常用方法:①利用法向量求点到面的距离定理:如图,设n是平面的法向量,AB是平面的一条射线,其中A,则点B到平面的距离为||||nnAB.②利用法向量求二面角的平面角定理:设21,nn分别是二面角l中平面,的法向量,则21,nn所成的角就是所求二面角的平面角或其补角大小(21,nn方向相同,则为补角,21,nn反方,则为其夹角).③证直线和平面平行定理:已知直线a

1 / 8
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功