12019应用题复习1.已知A、B两地相距80km,甲、乙两人沿同一公路从A地出发到B地,甲骑摩托车,乙骑电动车,图中直线DE,OC分别表示甲、乙离开A地的路程s(km)与时间t(h)的函数关系的图象。根据图象解答下列问题。(1)甲比乙晚出发几个小时?乙的速度是多少?(2)乙到达终点B地用了多长时间?(3)在乙出发后几小时,两人相遇?2.某果园有100棵橙子树,平均每棵树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少。根据经验估计,每多种一棵树,平均每棵果树就会少结5个橙子,假设果园多种x棵橙子树。(1)直接写出平均每棵树结的橙子数y(个)与x之间的关系式。(2)果园多种多少棵橙子树时,可以使橙子的总产量最大?最大为多少。3.某宾馆有30个房间供游客住宿,当每个房间的房价为每天120元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于210元.设每个房间的房价增加x元(x为10的正整数倍).(1)设一天订住的房间数为y,直接写出y与x的函数关系式及自变量x的取值范围;(2)设宾馆一天的利润为w元,求w与x的函数关系式;(3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?4.把一边长为40cm的正方形硬纸板,进行适当的剪裁,折成一个长方形盒子(纸板的厚度2忽略不计).(1)如图,若在正方形硬纸板的四角各剪一个同样大小的正方形,将剩余部分折成一个无盖的长方形盒子.①要使折成的长方形盒子的底面积为484cm2,那么剪掉的正方形的边长为多少?②折成的长方形盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说明理由.(2)若在正方形硬纸板的四周剪掉一些矩形(即剪掉的矩形至少有一条边在正方形硬纸板的边上),将剩余部分折成一个有盖的长方形盒子,若折成的一个长方形盒子的表面积为550cm2,求此时长方形盒子的长、宽、高(只需求出符合要求的一种情况).5.某商店经销某玩具每个进价60元,每个玩具不低于80元出售,玩具的销售单价m(元/个)与销售数量n(个)之间的函数关系如图.(1)试求表示线段AB的函数的解析式,并求出当销售数量n=20时的单价m的值;(2)写出该店当一次销售n(n>10)个时,所获利润w(元)与n(个)之间的函数关系式:(3)店长小明经过一段时间的销售发现:卖27个赚的钱反而比卖30个赚的钱多,你能用数学知识解释这一现象吗?为了不出现这种现象,在其他条件不变的情况下,店长应把最低价每个80元至少提高到________元?6.我市雷雷服饰有限公司生产了一款夏季服装,通过实体商店和网上商店两种途径进行销售,3销售一段时间后,该公司对这种商品的销售情况,进行了为期30天的跟踪调查,其中实体商店的日销售量y1(百件)与时间t(t为整数,单位:天)的部分对应值如下表所示,网上商店的日销售量y2(百件)与时间t(t为整数,单位:天)的部分对应值如图所示.时间t(天)051015202530日销售量y1(百件)025404540250(1)请你在一次函数、二次函数和反比例函数中,选择合适的函数能反映y1与t的变化规律,并求出y1与t的函数关系式及自变量t的取值范围;(2)求y2与t的函数关系式,并写出自变量t的取值范围;(3)在跟踪调查的30天中,设实体商店和网上商店的日销售总量为y(百件),求y与t的函数关系式;当t为何值时,日销售总量y达到最大,并求出此时的最大值.7.月电科技有限公司用160万元,作为新产品的研发费用,成功研制出了一种市场急需的电子产品,已于当年投入生产并进行销售。已知生产这种电子产品的成本为4元/件,在销售过程中发现:每年的年销售量y(万件)与销售价格x(元/件)的关系如图所示,其中AB为反比例函数图象的一部分,BC为一次函数图象的一部分。设公司销售这种电子产品的年利润为z(万元)。(注:若上一年盈利,则盈利不计入下一年的年利润;若上一年亏损,则亏损计作下一年的成本。)(1)请求出y(万件)与x(元/件)之间的函数关系式。(2)求出第一年这种电子产品的年利润z(万元)与x(元/件)之间的函数关系式,并求出第一年年利润的最大值。(3)假设公司的这种电子产品第一年恰好按年利润z(万元)取得最大值时进行销售,现根据第一年的盈亏情况,决定第二年将这种电子产品每件的销售价格x(元)定在8元以上(x8),当第二年的年利润不低于103万元时,请结合年利润z(万元)与销售价格x(元/件)的函数示意图,求销售价格x(元/件)的取值范围。8.如图①是矩形包书纸的示意图,虚线是折痕,四个角均为大小相同的正方形,正方形的边4长为折叠进去的宽度.(1)现有一本书长为25cm,宽为20cm,厚度是2cm,如果按照如图①的包书方式,并且折叠进去的宽度是3cm,则需要包书纸的长和宽分别为多少?(请直接写出答案).(2)已知数学课本长为26cm,宽为18.5cm,厚为1cm,小明用一张面积为1260cm2的矩形包书纸按如图①包好了这本书,求折进去的宽度.(3)如图②,矩形ABCD是一张一个角(△AEF)被污损的包书纸,已知AB=30,BC=50,AE=12,AF=16,要使用没有污损的部分包一本长为19,宽为16,厚为6的字典,小红认为只要按如图②的剪裁方式剪出一张面积最大的矩形PGCH就能包好这本字典.设PM=x,矩形PGCH的面积为y,当x取何值时y最大?并由此判断小红的想法是否可行.中考数学经典大题1.已知在△ABC中,∠ABC=90°,AB=6,BC=8.点Q是线段AC上的一个动点,过点Q作AC的垂线交线段AB(如图1)或线段AB的延长线(如图2)于点P.(1)当点P在线段AB上时,求证:△APQ△ACB;(2)当△PQB是等腰三角形时,求AP的长.2.如图,对称轴为的抛物线与轴相交于A、B两点,其中点A的坐标为(-3,0).(1)求点B的坐标;(2)已知,C为抛物线与轴的交点.①若点P是抛物线上第三象限内的点,是否存在点P,使得S△POC=4S△BOC,若存在,求点P的坐标;若不存在,请说明理由.②设点Q是线段AC上的动点,作QD轴交抛物线于点D,求线段QD长度的最大值.5③若M是轴上方抛物线上的点,过点M作MN轴于点N,若△MNO与△OBC相似,求M点的坐标.3.如图,已知在△ABP中,C是BP边上一点,∠PAC=∠PBA,⊙O是△ABC的外接圆,AD是⊙O的直径,且交BP于点E.(1)求证:PA是⊙O的切线;(2)过点C作CFAD,垂足为点F,延长CF交AB于点G,若AG·AB=12,求AC的长;(3)在满足(2)的条件下,若AF:FD=1:2,GF=1,求⊙O的半径.4.如图,已知函数与坐标轴分别交于A、D、B三点,顶点为C.(1)求△BAD的面积;(2)点P是抛物线上一动点,是否存在点P,使S△ABP=S△ABC?若存在,求出点P的坐标;若不存在,请说明理由;(3)在轴上是否存在一点Q,使得△DOQ与△ABC相似,如果存在,求出点P的坐标,如果不存在,请说明理由.5.如图,在平面直角坐标系中,四边形ABCD是以AB为直径的⊙M的内接四边形,点A、B在6轴上,△MBC是边长为2的等边三角形。过点M作直线与轴垂直,交⊙M于点E,垂足为点M,且点D平分.(1)求过A、B、E三点的抛物线的解析式;(2)求证:四边形AMCD是菱形;(3)请问在抛物线上是否存在一点P,使得△ABP的面积等于定值5?若存在,请求出所有的点P的坐标;若不存在,请说明理由.6.如图1,直角△ABC中,∠ABC=90°,AB是⊙O的直径,⊙O交AC于点D,取CB的中点E,DE的延长线与AB的延长线交于点P.(1)求证:PD是⊙O的切线;(2)若OB=BP,AD=6,求BC的长;(3)如图2,连接OD,AE相交于点F,若,求的值.7.已知抛物线经过点A(3,2),B(0,1)和点C(-1,).(1)求抛物线的解析式;(2)如图,若抛物线的顶点为P,点A关于对称轴的对称点为M,过M的直线交抛物线于另一点N(N在对称轴右边),交对称轴于F,若S△PFN=4S△PFM,求点F的坐标;(3)在(2)的条件下,在轴上是否存在点G,使△BMA与△MBG相似?若存在,求点G的坐标;若不存在,请说明理由.78.如图,PB切⊙O于B点,直线PO交⊙O于点E、F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO交⊙O于点C,连结BC,AF.(1)直线PA是否为⊙O的切线,并证明你的结论;(2)若BC=16,⊙O的半径的长为17,求的值;(3)若OD:DP=1:3,且OA=3,则图中阴影部分的面积为?9.将抛物线C1:平移后的抛物线C2与轴交于A、B两点(点A在点B的左边)与轴负半轴交于C点,已知A(-1,0),.(1)求抛物线C2的解析式;(2)若点P是抛物线C2上的一点,连接PB,PC.求S△BPC=S△CAB时点P的坐标;(3)D为抛物线C2的顶点,Q是线段BD上一动点,连接CQ,点B,D到直线CQ的距离记为d1,d2,试求出d1+d2的最大值,并求出此时Q点坐标.10.如图1,AB为⊙O的直径,TA为⊙O的切线,BT交⊙O于点D,TO交⊙O于点C、E.(1)若BD=TD,求证:AB=AT;(2)在(1)的条件下,求的值;(3)如图2,若,且⊙O的半径r=,则图中阴影部分的面积为?811.如图,过A(1,0),B(3,0)作轴的垂线,分别交直线于C、D两点.抛物线经过O、C、D三点.(1)求抛物线的表达式;(2)点M为直线OD上的一个动点,过M作轴的垂线交抛物线于点N,问是否存在这样的点M,使得以A、C、M、N为顶点的四边形为平行四边形?若存在,求此时点M的横坐标;若不存在,请说明理由;(3)若点P为抛物线上的一点,连接PD,PC.求S△PCD=S△CDB时点P的坐标.(4)若△AOC沿CD方向平移(点C在线段CD上,且不与点D重合),在平移的过程中△AOC与△OBD重叠部分的面积记为S,试求S的最大值.12.如图,点C在以AB为直径的⊙O上,AD与过点C的切线垂直,垂足为点D,AD交⊙O于点E.(1)求证:AC平分∠DAB;(2)连接BE交AC于点F,若=,求的值.913.如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连结AP并延长交CD于F点.(1)求证:四边形AECF为平行四边形;(2)若△AEP是等边三角形,连结BP,求证:△APB△EPC;(3)若矩形ABCD的边AB=6,BC=4,求△CPF的面积.14.如图,在平面直角坐标系中,抛物线与轴交于A、B两点(点A在点B的左侧),经过点A的直线l:与轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并求出直线l的函数表达式(其中k、b用含的式子表示);(2)点E是直线l上方的抛物线上的动点,若△ACE的面积的最大值为,求的值;(3)设P是抛物线的对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.15.如图,已知AB为⊙O的直径,PA与⊙O相切于点A,线段OP与弦AC垂直并相交于点D,OP与弧AC相交于点E,连接BC.(1)求证:PA·BC=AB·CD.(2)若PA=10,=,求PE的长.1016.已知:点P是平行四边形ABCD对角线AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C向直线BP作垂线,垂足分别为点E、F,点O为AC的中点.(1)当点P与点O重合时如图1,求证:OE=OF;(2)直线BP绕点B逆时针方向旋转,当∠OFE=30°时.①若转到如图2的位置,线段CF、AE、OE之间有一个不变的相等关系式,请写出这个关系式.(不用证明)②若转到图3的位置,猜想线段CF、AE、OE之间有怎样的数量关系?请予以