第十一章广义积分§11.1无穷限广义积分1.求下列无穷积分的值:(1)2211dxx;(2)22)1(1dxxx;(3))0(02adxxeax;(4))0(sin0abxdxeax;.(5)021dxxx;(6))0,()()(022qpqxpxdx.解(1)3ln21)31ln11(ln21lim11lim112222AAdxxdxxAAA.(2)2ln21)2ln1(ln21lim)1(1lim)1(1221212AAdxxxdxxxAAA.(3)a211a21limlim22200)(edxexdxexaxAAaxAax.(4)设0sinbxdxeIax)0(a,则)cossin1(limsinlim000AaxAaxAAaxAdxbxeabbxeabxdxeI)sincos(lim002AaxAaxAbxdxebbxeabIababbxdxeababbxdxeababaxAaxA22202220222sinsinlim,所以,22babI.(5)作变换yx,则有dyyyyyyyyyyydyyydxxx)21)(21()21(22)21(221212222422)22(21)(2121)21(42222yydyyyyd)22(2121)21)21(42222ydyyyyydCyyyyyy)]12arctan()12[arctan(222121ln4222Cxxxxxxy)]12arctan()12[arctan(221)21(ln4222,所以,)]12arctan()12[arctan(221)21(ln4212202AAAAAdxxxA)(22)22(22A,即,22102dxxx.(6)由于当qp时,用nnxadxI)(22的地推公式,pxdxppxxppxdxqxpxdx2222222121)())((Cpxpppxxparctan21212所以,时,0qppppApppAAppxdxAAA4)arctan2121(lim)(lim2022,当qp时,由于dxpxqxqpqxpxdxqpqpqxpxdx)11(1))(()(1))((222222Cpxpqxqqp)arctan1arctan1(1,所以,当qp时,AAqxdxqxpxdx02022)(lim))(()(2)arctan1arctan1(1limqppqpApqAqqpA两种情况下,即只要0,qp,就有022)(2))((qppqqxpxdx.2.讨论下列积分的收敛性:(1)0341xdx;(2)031arctandxxx;(3)+121sindxx;(4)0dxxxsin11;(5)022sin1dxxxx;(6))0,(10mndxxxnm;(7)0 1242xxdxx;(8)13211dxxx;(9))0(02pdxexx;(10)1lndxxxp;(11)12lndxxxn(n是正整数);(12)02sindxxx;(13)01cosdxxaxn;(14)1]11)11[ln(dxxx;(15)1)1sin1ln(cosdxxx;(16)0dxxx1222sin1ln1.解(1)111lim3434xxx,所以积分0341xdx收敛.(2)21arctanlim32xxxxx,故所求积分收敛.(3)111sinlim1sinlim2222xxxxxx,因此所求积分收敛.(4)0x,有011sin11xxx,且)1ln(lim1lim10AxdxxdxAAA0,即01xdx发散,由比较判别法知0xxdxsin1发散.(5)0x,有01sin1222xxxxx,而11lim2xxxx,无穷积分021dxxx发散,由比较判别法知022sin1dxxxx发散.(6)因为11limnnxxx,所以,当1mn,即1mn时,01dxxxnm收敛;当1mn,即1mn时,01dxxxnm发散.(7) 11lim2422xxxxx,所以积分收敛.(8)1111lim11lim323235xxxxxx,所以积分收敛.(9)因为xpxxpxxpxexpexexx122)2(limlim)(lim0])[()1)(2(lim][xppxexpppp,所以无穷积分收敛.(10)若1p,则可以选取00,使得10p,由于0lnlimlnlim00xxxxxXppx,所以1lndxxxp收敛;若1p,则当ex时,ppxxx1ln,而11dxxp发散,由比较判别法,1lndxxxp发散.从而,.时发散时收敛1p,,1p,ln1dxxxp(11)由于012)1(22limln2limlnlimlnlim2121121223xnnxxnxxxxxxnxnxnx,所以无穷积分12lndxxxn收敛.(12)因为xxxxxxx22cos2122cos1sin2,而21)0sin2(sin212cos0AxdxA,对一切0A成立,x21在[1,+)单调下降,且当x时趋于0,由Dirichlet判别法122cosdxxx收敛,又12xdx发散,所以02sindxxx发散(0x是可去间断点).(13)当1n时,由于nnxxax111cos,而011dxxn收敛,所以01cosdxxaxn收敛,故这时不论Ra是哪个常数,01cosdxxaxn均绝对收敛.当10n时,若0a,则由于aaAaaxdxA1sin1cos0,而nx11在),0[单调递减,且当x时趋于0,由Dirichlet判别法知,无穷积分收敛,但由于)1(22cos)1(211cos1cos2nnnnxaxxxaxxax,则由于0)1(21dxxn发散,同样由Dirichlet判别法知0)1(22cosdxxaxn收敛,故021cosdxxaxn发散,由比较判别法知012cosdxxaxn发散,故这时无穷积分条件收敛.当10n且0a时,无穷积分为011dxxn发散.当0n时,无穷积分为,02Alim,0sin21lim2coslim2cosAA00aaaAadxaxdxaxAA,不存在,故这时,不论a为何常数,积分发散.当0n时,若0a,无穷积分为011dxxn发散.以下假设0a,0820a,NKA,0,使得Aaak42且142naak,这时0424282)44(421cosaaadxxaxaakaakn,由Cauchy收敛原理,01cosdxxaxn发散.综上,积分01cosdxxaxn当0n时绝对收敛;当10n且0a时条件收敛;其他时候发散.(14)因为)1(21))1(11(1)1(21111)11ln(2222xoxxoxxxoxxxx,所以,1]11)11[ln(dxxx收敛.(15)因为xxxxxxxx1)1sin1ln(coslim)1sin1ln(coslim11sin1cos1sin1coslim)1)(1sin1(cos)1(1cos)1(1sinlim222xxxxxxxxxxxxx,所以,1)1sin1ln(cosdxxx发散.(16)因为12sin1212x,所以,2ln2sin1ln012x.因此,21221222ln2sin1ln12sin1ln1xxxxx,而122lndxx收敛,所以0dxxx1222sin1ln1收敛(0x是可去间断点).3.讨论下列无穷积分的收敛性(包括绝对收敛或条件收敛):(1)1dxxx2cos;(2)1dxxxcos;(3)1cosdxxxp;(4)0100cosdxxxx;(5)2sinlnlnlnxdxxx.解(1)xxxxxxx22cos2122cos1cos2,由于121dxx发散,而1dxxx22cos收敛(Dirichlet判别法),因此,1dxxx2cos发散.(2)由Dirichlet判别法知1dxxxcos收敛,但由于xxxx2coscos,而由(1),1dxxx2cos发散,故由比较判别法知1cosdxxx发散,因而1dxxxcos条件收敛.(3)1p时,由于ppxxx1cos对一切),1[x成立,所以1cosdxxxp绝对收敛.10p时,用Dirichlet判别法知1dxxxpcos收敛,但由于ppppxxxxxxx22cos21coscos2,同样用Dirichlet判别法知122cosdxxxp收敛,而121dxxp发散,故由比较判别法知1cosdxxxp发散,所以这时1cosdxxxp条件收敛.0p时,1cosxdx发散.0p时,亦发散(用Cauchy收敛原理即可).所以,1cosdxxxp当1p时绝对收敛;10p时条件收敛;0p时发散.(4)11100cos100cosdxxxxxdxxxx,由于1cosdxxx收敛,100xx单调递减有界,故由Abel判别法,1100cosdxxxx收敛,从而0100cosdxxxx也收敛,但)100(22cos)100(2100cos100cos2xxxxxxxxxxx,同样0)100(22cosdxxxx收敛,但0)100(2dxxx发散,所以0100cosdxxxx发散.因此,0100cosdxxxx条件收敛.(5)22lnlnlnlnsinsinlnlnlndxxxxxxdxxx,用Dirichlet判别法知2lnsindxxx收敛,而由于)(0lnlnlnxxx,因而xxlnlnln有界,且由于23)(ln2lnln2lnlnlnxxxxx,当2eex小于零,故当2eex时,xxlnlnln单调递减,由Abel判别法,2sinlnlnlnxdxxx收敛.但xxxxxxxxxxxln22cos)ln(lnln2lnlnsinlnlnlnsinlnlnln2,同样用Abel判别法,2ln22coslnlndxxxx收敛,而