1第四章微商与微分第一节微商的概念及其计算221.(1,1)(2,4)'2,(1,1),(2,4)'(1)2,'(2)4;21,44.1,yxAByxyxAByyyxyx求抛物线在点和点的切线方程和法线方程。解:函数的导函数为则它在的切线斜率分别为于是由点斜式可以求得在这两点的切线方程分别为由于法线斜率与切线斜率的乘积为故可以求得在这两点的法线斜1211,241319,.2242kkyxyx率分别为;那么由点斜式可以求得在这两点的法线方程分别为212.,2(1)1,1(1,0.1,0.01);(2)1(1)1(1)2(11)22;1.21(10.1)1.121.0201(10.01)1.012SvtgttttttSvgSvgSvgSvg若求在之间的平均速度设在的瞬时速度。解:可以求得于是有123(11)(1)1.51(10.1)(1)1.05;0.1(10.01)(1)1.0050.01(2)','(1),1.SSvvgSSvvgSSvvgdSSygtSvgtvgdt由于于是在的瞬时速度为3.ln(1)1,(2)231ln';1(1)'1,1;(1)ln10,(10)1111(1)'2,;(1)lnln2,(2ln2)23.22yxyxyxyxyxyxyyxxyxyyxx试确定曲线在哪些点的切线平行于下列直线:解:函数的导函数为令可得故曲线在点,的切线平行于直线;令可得故曲线在点,的切线平行于22222000200034.(),,()33(3)(3)(3)36limlimlim6(3)(3)(3)33limlimlimxxxxxxxxfxabfxxaxbxfxfxxxxxxfxfaxbaaxxx设试确定的值,使在处可导。解:可以求得;令96,39066,9.bxabaab那么必有解得:2215.(1),(2,1);(2)cos,(0,1).4(1)','(2)1;4211.1,3PxyPyxPxxyyPkykPkyxyx求下列曲线在指定点的切线方程和法线方程。解:函数的导函数为则在点的切线斜率为由于同一点的切线与法线相垂直,于是法线斜率为因此由点斜式可以求得在点的切线与法线分别为.(2)cos'sin,'(0)0;1.0.yxyxPkyPyx函数的导函数为则在点的切线斜率为因此由点斜式可以求得在点的切线为由于在同一点的法线与切线相垂直,于是在此点的法线为3333030000330006.(1)()0(),0()()'()lim()limxxfxxxxfxxxxxfxxfxfxxxxx求下列函数的导函数:解:那么对于有R322330000022320000033lim33lim3;xxxxxxxxxxxxxxxxxxx对于有R00003300032000()()'()lim()()lim3limxxxfxxfxfxxxxxxxx2330022320000300333lim3;0(0)()0'(00)limlimxxxxxxxxxxxxxxxxxfxfxxfxx当时有300220,(0)()0'(00)limlim0,'(0)0.30'()3xxfxfxxfxxfxxfxxx因此综上可得.040000000010(2)()10()()'()lim()1(1)limxxxxfxxxfxxfxfxxxxxx解:对于有R00000000lim1;()()'()lim110limlim0;xxxxxxxfxxfxfxxxx对于有当R00000(0)()11'(00)limlim1,(0)()11'(00)limlim0,'(0).xxxxxfxfxxfxxfxfxfxxf时有因此不存在综上可得10'().00xfxx5001sin07.(),().00(1)()0(2)()0(3)'()011(1)sin1lim()limsin0(0).mmxxxxfxmxxmfxxmfxxmfxxmfxxfmxx设函数为正整数试问:等于何值时,在点连续;等于何值时,在点可导;等于何值时,在点连续.解:由于有界,故当时,有于是当10001001()01sin0(0)(0)1(2)limlimlimsin,11(0)(0)1limlimsin02()0(3)2,0'(mmxxxmxxfxxxfxfxxmxxxfxfxxxmfxxmxf时在点连续。显然当时有;即当时在点可导。设当时,1212001200011)sincos.211lim(sin)0,lim(cos112lim(sin)0,lim(cos)0lim'(0)0'(0),3'()0mmmmxxmmxxxxmxxmxxmxxxxmmxxffmxxfxx当时)不存在;当时,故此时有即当时在点连续。8.(0)'(0)0,1()sin0();00'(0).()(0)1'(0)0(0)sin(0)(0)0gggxxfxxxfgxggxxxxg设求解:由于,可知是无穷小量,而是有界函数;又因为,于是有00001()sin0(0)(0)()(0)1limlimlim[sin]0(0)(0)'(0)lim0.xxxxgxfxfgxgxxxxxfxffx即600000000000000009.'()()()lim'().2()()()()'()limlim'().()()lim2xxxxfxfxxfxxfxxfxxfxfxfxxfxfxxxfxxfxxx证明:若存在,则证明:由于存在,那么于是有0000000000000000()()()()1lim2()()()()1lim[]2()()()()1[limlim]2xxxxfxxfxfxfxxxfxxfxfxfxxxxfxxfxfxfxxxx00000001['()'()]'().2()()lim'().2xfxfxfxfxxfxxfxx因此有121212000010.()(,),(,),()()(),'(0)1,(,),'()().()0,'()()0(,),()0,()(fxxxfxxfxfxfxfxfxfxfxfxxfxfxfx设是定义在上的函数,且对任意有若证明对任意有证明:若那么显然有成立。若存在使得那么0000)()(0),(0)1.(,),()()()()()()1().(,),()()()1'()limlim()xxfxffxfxxfxfxfxfxfxfxxxxxfxxfxfxfxfxxx于是有那么对于任意有于是对于任意有00()1(0)(0)()lim()lim()'(0)().xxfxfxffxfxxxfxffx0011.()'()'(0)0.9(0)(0)'(0)lim;2()()(),(0)(0),(0)(0)'(0)lim2xxfxfxffxfxfxfxfxfxfxfxfxfxf设是偶函数,且存在,证明:证明:由第题可以知道由于函数是偶函数,因此有即那么00lim0.2xxx即得证。70000000000000012.()'()3,'().'()3()()()()'()limlim3.()()()'()limxxxfxfxfxfxfxxfxfxfxxfxxxfxfxxfxfxx设是奇函数,且求解:由知由函数是奇函数可以知道000000()[()]lim()()lim3xxfxxfxxfxfxxx0013.()()()'()lim()()limxxfxfxxfxfxxfxfxxx用定义证明:可导的偶函数的导数是奇函数,可导的奇函数的导数是偶函数。证明:设是可导的偶函数,那么有00()()lim()()lim'()()()'()lxxfxfxxxfxxfxxfxfxgxgx即可导的偶函数的导数是奇函数。设是可导的奇函数,那么有0000()()im()()lim()[()]lim()()limxxxxgxxgxxgxgxxxgxgxxxgxxgxx'()()gxgx即可导的奇函数的导数是偶函数。14.求下列函数的导数:22(1)sin'2sincos.yxxyxxxx解:2(2)cos3'cossin6yxxxyxxxx解:82(3)tan76'tan7cosxyxxxyxx解:22(4)sin7cos5'(sin)'(7cos)'(5)sincos7sin10(sincos)7sin10.xxxxxyexxxyexxxexexxxexxxx解:13222221421(5)42'662yxxyxxxxxxx解:1423475521(6)35'3213.22yxxyxxxxx解:2222222212(1)(2)(1)4(7).'1(1)(1)xxxxxxyyxxx解:2222212121(8)'1(1)(1)xxyyxxxxxx解:22(9)(1)(2)1212'.(1)(2)12(1)(2)xyxxxyyxxxxxx解:,于是2211(10)111(1)21(1)21,'11(1)(1)yxxxxxxxxxyyxxxxx解:于是2211(1)(1)1122(11)'1(1)(1)xxxxxyyxxxx解:2333233211111111(12)'()323633yxyxxxxx解:33212211(13)ln'3ln3lnnnnxnyxxxyxxxxxxxnxn解:44384255cos1(14)lnsin4cos1cos1sin4cos1cos'lnlnxyxxxxxxxxxxxyxxxxxxxx解:922211111(15)()ln'(1)ln(1)ln1xxyxxyxxxxxxx解:222222cosln(16)11(cossin)(1)cosln'(1)(1)11sin1cossinlnsinsincosln