CRISPR/Cas9系统介绍许汪盛程程于艳超周步丹刘天昕郭歆岩CRISPR/Cas9背景CRISPR是生命进化历史上,细菌和病毒进行斗争产生的免疫武器,简单说就是病毒能把自己的基因整合到细菌内,利用细菌的细胞工具为自己的基因复制服务,细菌为了将病毒的外来入侵基因清除,进化出很多成簇的、规律间隔的短回文重复序列(既CRISPR序列)和CRISPR相关基因,这一序列首先由日本学者于1987年首次发现(1),于2002年被Jansen等将正式命名(2)。由这些序列和基因组成的系统我们称之为CRISPR/Cas系统,而在这个系统中常用到的核酸内切酶为Cas9,所以通常称该系统CRISPR/Cas9系统。利用这个系统,细菌可以不动声色地把病毒基因从自己的染色体上切除,这是细菌特有的免疫系统。CRISPR/Cas9概述CRISPR-Cas:一种来源是细菌获得性免疫的由RNA指导Cas蛋白对靶向基因进行修饰的技术。CRISPR/Cas系统的基本结构识别作用切割作用CRISPR系统通常包括:由不连续的重复序列(repeats,R)与长度相似的间区序列(spacers,S)间隔排列而成的CRISPR簇,前导序列(leader,L)以及一系列的CRISPR相关蛋白基因(cas)。Cas(CRISPRassociated):存在于CRISPR位点附近,是一种双链DNA核酸酶,能在guideRNA引导下对靶位点进行切割。它不需要形成二聚体才能发挥作用。CRISPR的转录与加工CRISPR簇首先转录成长的转录体,即(crRNA),然后逐步被加工成小的crRNA。CRISPR/Cas9作用机理CRISPR/Cas9作用机理PAM(NGG序列)CRISPR/Cas9系统靶向要求最主要的要求:PAM(protospacer-adjacentmotif)为NGG。在人类基因组中,平均每8bp就出现一个NGGPAM。CRISPR/Cas9基因编辑实验流程图CRISPR/Cas9的技术应用应用于基因的敲除、敲入以及基因沉默、激活等。能够在真核细胞中发挥作用,使真核基因组中的特异性位点发生双链断裂。在模式生物中的应用:成功地对线虫(左)、斑马鱼胚胎(中)和果蝇进行遗传学改造,获得更粗短的线虫,腹部组织体积更大的斑马鱼胚胎,和眼睛颜色更深的果蝇,表明CRISPR技术在动物基因改造方面有巨大应用潜力。中国科学院遗传所高彩霞团队:成功地使三种水稻基因失活。三大基因修饰技术比较CRISPR/Cas9系统的优势操作简单,靶向精确性更高。sgRNA靶向序列和基因组序列必须完全匹配,Cas9才会对DNA进行剪切。编码sgRNA的序列不超过100bp,因此比构建TALENs和ZENs更简单方便,用于CRISPR的sgRNA识别序列仅需20个核苷酸。CRISPR/Cas9系统是由RNA调控的对DNA的修饰,其基因修饰可遗传。基因修饰率高,CRISPRs基因敲入的效率为51%-79%,TALENs的效率为0%-34%。基因调控方式多样,例如敲除、插入、抑制、激活等无物种限制,可实现对靶基因多个位点同时敲除。实验周期短,最快仅需2个月,节省大量时间和成本。(ZFNS一个靶点成本6000$)CRISPR/Cas9系统的评价参考文献:[1]Y.Ishino,H.Shinagawa,K.Makino,M.Amemura,A.Nakata,Nucleotidesequenceoftheiapgene,responsibleforalkalinephosphataseisozymeconversioninEscherichiacoli,andidentificationofthegeneproduct.Journalofbacteriology169,5429-5433(1987).[2]R.Jansen,J.D.A.v.Embden,W.Gaastra,L.M.Schouls,IdentificationofgenesthatareassociatedwithDNArepeatsinprokaryotes.Molecularmicrobiology43,1565-1575(2002).[3]方锐,畅飞,孙照霖,李宁,孟庆勇.CRISPR/Cas9介导的基因组定点编辑技术[J].生物化学与生物物理进展,2013,08:691-702.[4]李君,张毅,陈坤玲,单奇伟,王延鹏,梁振,高彩霞.CRISPR/Cas系统:RNA靶向的基因组定向编辑新技术[J].遗传,2013,11:1265-1273.[5]沈彬.利用CRISPR/Cas9进行基因编辑[D].南京大学,2014.谢谢欣赏欢迎批评指正