中考数学二次函数应用专题

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

实用标准文案文档二次函数应用专题1、九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<5050≤x≤90售价(元/件)x+4090每天销量(件)200-2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.2、某商场要经营一种新上市的文具,进价为20元/件,试营销阶段发现:当销售单价25元/件时,每天的销售量是250件,销售单价每上涨1元,每天的销售量就减少10件.(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大;(3)商场的营销部结合上述情况,提出了A、B两种营销方案:方案A:该文具的销售单价高于进价且不超过30元;方案B:每件文具的利润不低于为25元且不高于29元.请比较哪种方案的最大利润更高,并说明理由.实用标准文案文档3、某电子科技公司开发一种新产品,公司对经营的盈亏情况每月最后一天结算1次.在1~12月份中,公司前x个月累计获得的总利润y(万元)与销售时间x(月)之间满足二次函数关系式y=a(x﹣h)2+k,二次函数y=a(x﹣h)2+k的一部分图象如图所示,点A为抛物线的顶点,且点A、B、C的横坐标分别为4、10、12,点A、B的纵坐标分别为﹣16、20.2-1-c-n-j-y(1)试确定函数关系式y=a(x﹣h)2+k;(2)分别求出前9个月公司累计获得的利润以及10月份一个月内所获得的利润;(3)在前12个月中,哪个月该公司一个月内所获得的利润最多?最多利润是多少万元?4、某花木公司在20天内销售一批马蹄莲.其中,该公司的鲜花批发部日销售量y1(万朵)与时间x(x为整数,单位:天)部分对应值如下表所示.时间x(天)048121620销量y1(万朵)0162424160另一部分鲜花在淘宝网销售,网上销售日销售量y2(万朵)与时间x(x为整数,单位:天)关系如图所示.(1)请你从所学过的一次函数、二次函数和反比例函数中确定哪种函数能表示y1与x的变化规律,写出y1与x的函数关系式及自变量x的取值范围;(2)观察马蹄莲网上销售量y2与时间x的变化规律,请你设想商家采用了何种销售策略使得销售量发生了变化,并写出销售量y2与x的函数关系式及自变量x的取值范围;(3)设该花木公司日销售总量为y万朵,写出y与时间x的函数关系式,并判断第几天日销售总量y最大,并求出此时最大值.实用标准文案文档5、某店因为经营不善欠下38400元的无息贷款的债务,想转行经营服装专卖店又缺少资金.“中国梦想秀”栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息).已知该店代理的品牌服装的进价为每件40元,该品牌服装日销售量y(件)与销售价x(元/件)之间的关系可用图中的一条折线(实线)来表示.该店应支付员工的工资为每人每天82元,每天还应支付其它费用为106元(不包含债务).(1)求日销售量y(件)与销售价x(元/件)之间的函数关系式;(2)若该店暂不考虑偿还债务,当某天的销售价为48元/件时,当天正好收支平衡(收人=支出),求该店员工的人数;(3)若该店只有2名员工,则该店最早需要多少天能还清所有债务,此时每件服装的价格应定为多少元?6、我市某美食城今年年初推出一种新型套餐,这种套餐每份的成本为40元,该美食城每天需为这种新型套餐支付固定费用(不含套餐成本)3000元.此种套餐经过一段时间的试销得知,若每份套餐售价不超过60元时,每天可销售200份;若每份售价超过60元时,每提高1元,每天的销售量就减少8份.为便于结算,每份套餐的售价x(元)取整数,且售价不低于成本价.设美食城销售此种新型套餐所获的日销售利润为w(元).(1)求w与x之间的函数关系式,并指出自变量x的取值范围;(2)该美食城既要获得最大的日销售利润,又要吸引顾客,尽可能提高日销售量,则每份套餐的售价应定为多少元?此时日销售利润为多少?(3)今年五一节前,为答谢广大消费者,该美食城也决定从4月起的一段时间内,每销售出一份此种新型套餐就返回顾客现金a元(a为整数),该美食城在此种新型套餐每份的售价不超过62元的情况下,为使每天让利顾客后的日销售最大利润不低于600元,求a的最大值.实用标准文案文档7、大润发超市在销售某种进货价为20元/件的商品时,以30元/件售出,每天能售出100件.调查表明:这种商品的售价每上涨1元/件,其销售量就将减少2件.(1)为了实现每天1600元的销售利润,超市应将这种商品的售价定为多少?(2)设每件商品的售价为x元,超市所获利润为y元.①求y与x之间的函数关系式;②物价局规定该商品的售价不能超过40元/件,超市为了获得最大的利润,应将该商品售价定为多少?最大利润是多少?8、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?实用标准文案文档9、东门天虹商场购进一批“童乐”牌玩具,每件成本价30元,每件玩具销售单价x(元)与每天的销售量y(件)的关系如下表:x(元)…35404550…y(件)…750700650600…若每天的销售量y(件)是销售单价x(元)的一次函数(1)求y与x的函数关系式;(2)设东门天虹商场销售“童乐”牌儿童玩具每天获得的利润为w(元),当销售单价x为何值时,每天可获得最大利润?此时最大利润是多少?(3)若东门天虹商场销售“童乐”牌玩具每天获得的利润最多不超过15000元,最低不低于12000元,那么商场该如何确定“童乐”牌玩具的销售单价的波动范围?请你直接给出销售单价x的范围。10、为丰富农民收入来源,某区在多个乡镇试点推广大棚草莓的种植,并给予每亩地每年发放补贴150元补贴.年初,种植户蒋大伯根据以往经验,考虑各种因素,预计本年每亩的草莓销售收入为2000元,以及每亩种植成本y(元)与种植面积x(亩)之间的函数关系如图所示.(1)根据图象,求出y与x之间的函数关系式;(2)根据预计情况,求蒋大伯今年种植总收入w(元)与种植面积x(亩)之间的函数关系式.(总收入=销售收入-种植成本+种植补贴).实用标准文案文档11、今年以来,国务院连续发布了《关于加快构建大众创业万众创新支撑平台的指导意见》等一系列支持性政策,各地政府高度重视、积极响应,中国掀起了大众创业万众创新的新浪潮.某创新公司生产营销A、B两种新产品,根据市场调研,发现如下信息:信息1:销售A种产品所获利润y(万元)与所售产品x(吨)之间存在二次函数关系,当x=1时,y=7;当x=2时,y=12.信息2:销售B种产品所获利润y(万元)与所售产品x(吨)之间存在正比例函数关系.根据以上信息,解答下列问题:(1)求;(2)该公司准备生产营销A、B两种产品共10吨,请设计一个生产方案,使销售A、B两种产品获得的利润之和最大,最大利润是多少?12、某开发商要建一批住房,经调查了解,若甲、乙两队分别单独完成,则乙队完成的天数是甲队的1.5倍;若甲、乙两队合作,则需120天完成.(1)甲、乙两队单独完成各需多少天?(2)施工过程中,开发商派两名工程师全程监督,需支付每人每天食宿费150元.已知乙队单独施工,开发商每天需支付施工费为10000元.现从甲、乙两队中选一队单独施工,若要使开发商选甲队支付的总费用不超过选乙队的,则甲队每天的施工费最多为多少元?(总费用=施工费+工程师食宿费)实用标准文案文档13、某科技开发公司研制出一种新型产品,每件产品的成本为2400元,销售单价定为3000元.在该产品的试销期间,为了促销,鼓励商家购买该新型产品,公司决定商家一次购买这种新型产品不超过10件时,每件按3000元销售;若一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低10元,但销售单价均不低于2600元.(1)商家一次购买这种产品多少件时,销售单价恰好为2600元?(2)设商家一次购买这种产品x件,开发公司所获的利润为y元,求y(元)与x(件)之间的函数关系式,并写出自变量x的取值范围.(3)该公司的销售人员发现:当商家一次购买产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获的利润反而减少这一情况.为使商家一次购买的数量越多,公司所获的利润最大,公司应将最低销售单价调整为多少元(其它销售条件不变)?参考答案一、简答题1、.解:(1)当1≤x<50时,y=(x+40-30)(200-2x)=-2x2+180x+2000;当50≤x≤90时,y=(90-30)(200-2x)=-120x+12000.综上,y=21·cn·jy·com(2)当1≤x<50时,y=-2x2+180x+2000=-2(x-45)2+6050,∵a=-2<0,∴当x=45时,y有最大值,最大值为6050元;当50≤x≤90时,y=-120x+12000,∵k=-120<0,∴y随x的增大而减小,∴当x=50时,y有最大值,最大值为6000元.综上可知,当x=45时,当天的销售利润最大,最大利润为6050元(3)412、【考点】二次函数的应用;一元二次方程的应用.【分析】(1)根据利润=(销售单价﹣进价)×销售量,列出函数关系式即可;(2)根据(1)式列出的函数关系式,运用配方法求最大值;(3)分别求出方案A、B中x的取值范围,然后分别求出A、B方案的最大利润,然后进行比较.【解答】解:(1)由题意得,销售量=250﹣10(x﹣25)=﹣10x+500,实用标准文案文档则w=(x﹣20)(﹣10x+500)=﹣10x2+700x﹣10000;(2)w=﹣10x2+700x﹣10000=﹣10(x﹣35)2+2250.∵﹣10<0,∴函数图象开口向下,w有最大值,当x=35时,w最大=2250,故当单价为35元时,该文具每天的利润最大;(3)A方案利润高.理由如下:A方案中:20<x≤30,故当x=30时,w有最大值,此时wA=2000;B方案中:故x的取值范围为:45≤x≤49,∵函数w=﹣10(x﹣35)2+2250,对称轴为直线x=35,∴当x=35时,w有最大值,此时wB=1250,∵wA>wB,∴A方案利润更高.3、【考点】二次函数的应用.【分析】(1)根据题意此抛物线的顶点坐标为(4,﹣16),设出抛物线的顶点式,把(10,20)代入即可求出a的值,把a的值代入抛物线的顶点式中即可确定出抛物线的解析式;(2)相邻两个月份的总利润的差即为某月利润.(3)根据前x个月内所获得的利润减去前x﹣1个月内所获得的利润,再减去16即可表示出第x个月内所获得的利润,为关于x的一次函数,且为增函数,得到x取最大为12时,把x=12代入即可求出最多的利润.【解答】解:(1)根据题意可设:y=a(x﹣4)2﹣16,当x=10时,y=20,所以a(10﹣4)2﹣16=20,解得a=1,所求函数关系式为:y=(x﹣4)2﹣16.﹣﹣﹣﹣﹣﹣﹣(2)当x=9时,y=(9﹣4)2﹣16=9,所以前9个月公司累计获得的利润为9万元,又由题意可知,当x=10时,y=20,而20﹣9=11,所以10月份一个月内所获得的利润11万元.﹣﹣﹣﹣﹣﹣﹣﹣﹣(3)设在前12个月中,第n个月该公司一个月内所获得的利润为s(万元)则有:s=(n﹣4)2﹣16﹣[(n﹣1﹣4)2﹣16]=

1 / 14
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功