1《“滑块+木板”模型》专题永安一中吴庆堂(一)专题复习素材选择的理由1、知识与技能、过程与方法、情感态度和价值观“三维目标”是新课程的“独创”,是新课程推进素质教育的根本体现,是新课程标准异于原教学大纲的关键点,也是这次课程改革的精髓,表现了改革所承担着的“新期待”。2、新课程高考物理试题给我们的启示:引导教学重视物理过程的分析和学生综合解决问题能力的培养,强调对考生“运用所学知识分析问题、解决问题的能力”的考查,并且把渗透和关注学生的情感、态度、价值观纳入到了考查目标中。命题坚持能力立意、问题立意。主干、重点知识重点考。3、在高中物理总复习中经常会遇到一个滑块在一个木板上的相对运动问题,我们称为“滑块+木板”模型问题。由于两个物体间存在相互作用力,相互影响,其运动过程相对复杂,致使一些同学对此类问题感到迷惑。此类问题曾是旧教材考试中热点问题,在我省实施的新课程高考中,由于高中物理3—3和3—5系选考内容,系统不受外力所遵循的动量守恒的情况在高考必考内容中一般会回避,因此,这类问题近些年在我省有些被冷落、受忽视。但千万记住有受外力情况下的相对运动依然是动力学的重要模型之一。(二)专题复习素材的编制为了提高训练的有效性,针对高考题目类型,选用题组进行强化训练,我们可以将训练试题分为“典例导学”、“变式训练”和“强化闯关”三部分。“典例导学”和“变式训练”主要起方法引领的作用,适用于课堂教学,试题以典型性、层次梯度分明的基础题、中档题为主,训练解题思路,指导解题方法,规范解题过程,培养解题能力。“强化闯关”供学生课外进行综合训练,一般采用各地质检和历届高考经典试题,试题综合性较强,其主要目的是让学生把所掌握的解题方法和技巧应用于具体的问题情境中,不仅练习考点稳定的高考题型,还练习可能的符合时代气息的创新题型、拓展题型,特别是那些能够很好地体现高考改革最新精神和学科思想方法(如对图象、图表的理解应用和提取有效信息能力)的试题,让学生实战演练,提前进入实战状态,提早体验高考,揭去高考神秘的面纱,努力提高学生娴熟的技能技巧和敏捷的思维方式,使学生树立高考必胜的信心。多角度、多层面剖析重点难点,通过题组辐射形成点带线,线连网,对考点要求有更深层次的理解与把握。下面试列举本专题复习中编制的三部分题型示例以供参考:1、动力学问题【例1】如图,A是小木块,B是木板,A和B都静止在地面上。A在B的右端,从某一时刻起,B受到一个水平向右的恒力F作用。AB之间的摩擦因数为1,B与地面间的摩擦因数为2,板的长度L,假设最大静摩擦力fmax和滑动摩擦力相等,试分析A、B各种可能的运动情况及AB间、B与地面间的摩擦力。【思路点拨】本题涉及两个临界问题:一、B是否相对地面滑动,这里先要弄清只有B相对地面滑动,B与A之间才有相对运动趋势(或相对运动),B与A之间才存在摩擦。所以,B是否相对地面滑动的临界条件:F=maxBf=μ2(m1+m2)g;二、A是否相对B滑动,这里先需要明确A是靠B对它的摩擦力来带动的。由题设知最大静摩擦力fmax和滑动摩擦力相等,A受到的摩擦力fmgA11,因而A的加速度agA1。A、B间滑动与否的临界条件为A、B的加速度相等,即aaAB,亦即[()]/Fmgmmgmg1121221。【变式训练1】如图,A是小木块,B是木板,A和B都静止在地面上。A在B的左端,2从某一时刻起,A受到一个水平向右的恒力F作用开。AB之间的摩擦因数为1,B与地面间的摩擦因数为2,板的长度L,假设最大静摩擦力fmax和滑动摩擦力相等,试分析A、B各种可能的运动情况及AB间、B与地面间的摩擦力。【例2】如图所示,质量M=4kg的木板长L=1.4m,静止在光滑的水平地面上,其水平顶面右端静置一个质量m=1kg的小滑块(可视为质点),小滑块与木板间的动摩擦因数μ=0.4。今用水平力F=28N向右拉木板,使滑块能从木板上掉下来,求此力作用的最短时间。(g=10m/s2)【思路点拨】与例1相比较,本题可以看成是例1中的一种特殊情况:即μ2=0,μ1=μ,F>μ(m1+m2)g的情形,只要力F作用在长木板上足够长时间(存在最小值)后撤去,小滑块必定能从长木板右端滑离。可以用动力学观点(牛顿运动定律和运动学公式)求解,也可以用动量能量观点求解。【变式训练2】如图所示,质量M=10kg的木板长L=1m,静止在光滑的水平地面上,其水平顶面左端静置一个质量m=4kg的小滑块(可视为质点),小滑块与木板间的动摩擦因数μ=0.25。今用水平力F向右拉滑块,使滑块能在2s内移到木板右端,则此力至少应为多大?(g=10m/s2)【例3】如图甲所示,木板A、B叠放在水平地面上,它们的右端相平,木板B长1m,质量为m,木板A长2m,质量为2m。已知B与A之间的动摩擦因数是A与地面间动摩擦因数的4倍。现使木板A突然获得一水平向右的初速度v0,最后A、B左端相平,形成图乙所示的状态停止在地面上,全过程历时2s,求v0的大小。(g=10m/s2)【思路点拨】本题也是一道多过程的相对运动问题。采用分解法分析复杂的物理过程,对各物体正确受力分析,画好运动示意图,建立清晰的物理情景,并从几何关系寻找物体之间的相互联系,甚至辅以v—t图像,仍是解决本题的重要手段。与例2相似,可以用动力学观点(牛顿运动定律和运动学公式)求解,也可以用动量能量观点求解。【变式训练3】如图,质量为m1木块A(可视为质点)以一定的初速度v0滑上原来静止在地面上的质量为m2的木板B。AB之间的动摩擦因数为1,B与地面间的动摩擦因数为2,板的长度L,试分析A、B可能的运动情况。2、能量问题:功是能量转化的量度。不同的力做的功量度的是不同形式的能量转化。本专题涉及的功能关系主要有:(1)所有外力做的总功等于物体的动能增量即动能定理,表达式为W总=△Ek。(2)重力做功的特点是与物体的移动路径无关,只取决于物体始末位置的高度差,即WG=mg△h;重力做的功量度的是重力势能的变化或弹性力(遵循胡克定律的弹力)做的功量度的是弹性势能的变化,表达式为WG=-△Ep或WT=-△Ep。可见,(3)只有重力做mMFmMFBA甲LASASB乙LB3功时,一定是物体的动能和重力势能之间相互转化,但系统机械能的总量保持不变;同理,只有弹性力做功时,一定是物体的动能和弹性势能之间相互转化,但系统机械能的总量也保持不变。所以,重力或弹性力做功并不会改变系统的机械能。换句话说,除重力和弹性力以外的其他力不做功或做的功代数和为零,系统的机械能总量保持不变,这就是机械能守恒定律。(4)除重力和弹性力以外的其他力做的功量度的是系统的机械能的变化,表达式为W其=△E。(5)一个静摩擦力或一个滑动摩擦力均可以做正功、不做功和做负功(请同学们自行举例说明,下同),且它们所做的功与移动的路径有关。但一对相互作用的静摩擦力做功的代数和总为零,因为作用力与反作用力总是同时存在、等大反向,而且静摩擦力总是发生在相对静止的两物体接触面之间,要么两物体(对地)都静止,这一对相互作用的静摩擦力都不做功,总功为零;要么两物体(对地)在摩擦力的方向上有相同的(分)位移,这一对相互作用的静摩擦力其中一个做正功,另一个必做等值的负功,总功也为零。所以,静摩擦力做功的结果只能使机械能在相互作用的两物体之间发生传递,但不会改变系统的机械能总量。而一对相互作用的滑动摩擦力做功的代数和总为负值,共有三种可能情况,第一种可能是一个滑动摩擦力不做功,它的反作用力却做负功;第二种可能是一个滑动摩擦力做负功,它的反作用力也做负功;第三种可能是相对滑动的两个物体(对地)朝同一个方向运动,一个滑动摩擦力对落后者做正功,它的反作用力对超前者做更多的负功。所以,滑动摩擦力做功的结果总是要使相互作用的两物体组成的系统机械能总量减少,一对相互作用的滑动摩擦力做功的代数和的绝对值量度的就是因摩擦所产生的内能,即Q=f相△S,式中△S表示物体间相对运动的路程。不过,无论是什么力做功,是哪些形式的能量在相互转化,机械能是否守恒,各种形式的能量总和不变,这就是能的转化和守恒定律。【例4】如图所示,质量为m=1kg的滑块(可视为质点)放在质量为M=2kg的长木板左端,木板放在粗糙水平面上,滑块与木板之间的动摩擦因数为μ1=0.1,木板与水平面之间的动摩擦因数为μ2=0.2,木板长为L=150cm,开始时两者都处于静止状态。(1)现用水平向左的恒力F拉木板的左端,要使木板从小滑块下面抽出,F必须满足什么条件?(2)若F=10N,则从开始到刚好把木板抽出的过程中,摩擦力对滑块做了多少功?F对木板做了多少功?【思路点拨】(1)如果有拉力F作用,WF将消耗的其他形式的能量转化为系统的动能和克服系统的摩擦力做功产生热量,即WF=ΔEK+Q,Q=f相△S(2)如果没有拉力F作用,滑块或木板的初动能转换为克服系统的摩擦力做功产生的热量,最终将停下来。W合=ΔEKQ=f相△S【变式训练4】如图所示,质量m=1kg的小物块放在一质量为M=4kg的足够长的木板右端,物块与木板间的动摩擦因数μ=0.2,木板与水平面间的摩擦不计。物块用劲度系数k=25N/m的弹簧拴住,弹簧的另一端固定。开始时整个装置静止,弹簧处于原长状态。现对木板施以12N的水平向右恒力(最大静摩擦力可认为等于滑动摩擦力,g=10m/s2)。求:(1)开始施力的瞬间小物块的加速度;(2)物块达到最大速度时离出发点多远?(3)若弹簧第一次拉伸最长时木板的速度为1.5m/s,则从开始运动到弹簧第一次达到最长损失的机械能是多少?强化闯关:1.如图所示,一足够长的木板静止在光滑水平面上,一物块静止在木板上,木板和物块间有摩擦。4现用水平力向右拉木板,当物块相对木板滑动了一段距离但仍有相对运动时,撤掉拉力,此后木板和物块相对于水平面的运动情况为()A.物块先向左运动,再向右运动B.物块向右运动,速度逐渐增大,直到做匀速运动C.木板向右运动,速度逐渐变小,直到做匀速运动D.木板和物块的速度都逐渐变小,直到为零2.如图,质量为m1木块A(可视为质点)和质量为m2的木板B都静止在地面上,A在B的右端。从某一时刻起,B受到一个水平向右的瞬间打击力而获得了一个向右运动的初速度v0。AB之间的摩擦因数为1,B与地面间的摩擦因数为2,板的长度L,试分析A、B可能的运动情况。3.如图所示,质量M=8kg的小车放在水平光滑的平面上,在小车左端加一水平恒力F,F=8N,当小车向右运动的速度达到1.5m/s时,在小车前端轻轻地放上一个大小不计,质量为m=2kg的小物块,物块与小车间的动摩擦因数μ=0.2,小车足够长.求从小物块放上小车开始,经过t=1.5s小物块通过的位移大小为多少?(取g=10m/s2).4.(2004全国卷Ⅰ)一小圆盘静止在桌布上,位于一方桌的水平桌面中央。桌布的一边与桌的AB边重合,如图。已知盘与桌布间的动摩擦因数为μ1,盘与桌面间的动摩擦因数为μ2。现突然以恒定的加速度a将桌布抽离桌面,加速度的方向水平且垂直于AB边。若圆盘最后未从桌面掉下,则加速度a满足的条件是什么?(以g表示重力加速度)5.如图为某生产流水线工作原理示意图。足够长的工作平台上有一小孔A,一定长度的操作板(厚度可忽略不计)静止于小孔的左侧,某时刻开始,零件(可视为质点)被无初速度地放上操作板中点,同时操作板在电动机带动下向右做匀加速直线运动直至运动到A孔的右侧(忽略小孔对操作板运动的影响),最终零件运动到A孔时速度恰好为零,并由A孔下落进入下一道工序。已知零件与操作板间的动摩擦因素05.01,与工作台间的动摩擦因素025.02,操作板与工作台间的动摩擦因素3.03。试问:(1)电动机对操作板所施加的力是恒力还是变力(只要回答是“变力”或“恒力”即可?)(2)操作板做匀加速直线运动的加速度a的大小为多少?(3)若操作板长L=2m,质量M=3kg,零件质量m=0.5kg,重力加速度取g=10m/s2,则操作板从A孔左侧完全运动到右侧过程中,电动机至少做多