基本不等式评课稿李老师的课思路清晰,结构严谨,重难点突出,很好的把握住了《国家课程标准》对基本不等式这节课的要求。同时,李老师形体语言亲切、自然,口头语言清晰、流畅。营造了积极、宽松的教学氛围。在整节课的教学设计中体现了:数学来源生活又服务的中心思想。从一开始由第24届国际数学家大会会标中几何图形的面积关系引入基本不等式,到后来用一定长度的篱笆围最大的矩形菜园面积和用最少的篱笆围一个面积一定的矩形面积,都是生活中经常用到的实际问题。在整节课的教学设计中站的高度较高,知识有一定的的深度和难度。在课堂的最后以两个高考题作为思考让学生体会基本不等式在高考中的难度,让学生发现自身与高考的距离,在平时的学习过程中方向性更加明确。在整节课的教学设计中难度层层递进,学生对知识的掌握有一个渐进的过程,有助于他们理解和掌握解决基本不等式问题时的一般思路和方法。一开始的例子是课本99页中的例1,学生解决起来非常轻松;后来的变式中将围墙的一边靠墙让学生解决同样的问题,从而使学生体会在不同条件下基本不等式的应用;例2是将求uxy变成求lglguxy的最值,将求4yxx的最值变成求41yxx的最值,强调基本不等式成立的条件和取到极值时的条件;最后上升到高考的高度。在0,0ab时,用,ab代替222abab中的,ab从而得到2abab,在这个过程中,李老师称222abab为重要不等式。在网上确实有许多教案和课件将222abab称为重要不等式,但是我们的教材、教师用书、教学指导意见中重来没有出现过重要不等式这个概念。百度百科对重要不等式的解释是:“一些重要的不等式”。所以我想,既然重要不等式这个概念并不明确,我们是不是可不可以不讲,否则可能会引起学生的认知冲突?李老师先由学生讲了对不等式222abab的证明,然后再证明2abab,主要由代数证明和几何证明两大块组成,在代数证明过程中,李老师详细讲解了综合法、分析法。在浙江省教学指导意见中对对基本不等式证明的要求仅仅是了解而已,所以我想,这个内容可以简单的讲,没必要面面俱到,生都会证明基本不等式,也容易理解其几何意义。课堂中教师要检验学生的掌握情况是否达到课程标准的要求,需要课堂评价。如何设计课堂评价,其形式、内容应该如何安排;。反馈练习中的题量,题型,难度留给学生是时间该如何把握,才能正真的检验出学生的掌握水平?本节课的课堂练习有两个,一个是选择题,一个是错题分析。目标是突出基本不等式成立时的条件和取到极值时的条件。两道题是否足够了呢,这两道题要留给学生多少的练习时间合适?练习仅仅是作为反馈方式和学生自检手段,还是可以在练习过程中穿插易错点的讲解与分析,达到的效果又如何呢?本节课的最后以问题串的形式进行小结,一般情况下,课堂小结都意味着一节课的完成。然而小结的内容肯定是教学目标中希望同学掌握的内容。那么是不是可以在小结之后再留一些时间和几个有针对性的题目让学生自检呢?