第3章3.2--Walsh变换

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

3.2沃尔什(Walsh)变换3.2.1引言比较:傅立叶变换:快速算法,复数运算,乘法,速度慢,可硬件实现,精度高Waish变换:快速算法,实数运算,加减法,速度快,可硬件实现,精度低拉德梅克(Rademacher)函数的定义:)2sin(),(tsigntnRn其中:n为序号,n=0,1,,N-1t为连续时间变量符号函数:)(xfsign0,1)(当xf0,1)(当xf3.2沃尔什(Walsh)变换3.2.1引言拉德梅克(Rademacher)函数:)2sin(),(tsigntnRn符号函数:)(xfsign0,1)(当xf0,1)(当xf+1-1+1-1+1-1+1-1)2sin(tn1ttttt+1-11111n=0n=1n=2n=3),0(tR),1(tR),2(tR),3(tR(2)是一个不完备的函数,只有奇函数,不能用于变换。拉德梅克函数的特点:(1)是正交函数族:10),(),(dttmRtnRn)(m0n)(m13.2沃尔什(Walsh)变换3.2.2Walsh函数1.连续Walsh函数的定义(1)Walsh序的Walsh函数iiigpibbpiWtiRtiRtnW1010),1(),1(),(1定义:的比特数为即NpNp,log2其中:1,,1,0Nnn为序号:位的二进制码的第是inbi格雷码,1iiibbg拉德梅克函数3.2沃尔什(Walsh)变换3.2.2Walsh函数1.连续Walsh函数的定义(1)Walsh序的Walsh函数格雷码,1iiibbg710n38logp82,,,,,例:N二进制码格雷码nb2b1b0g2g1g0000000010010012010011301101041001105101111611010171111003.2沃尔什(Walsh)变换3.2.2Walsh函数1.连续Walsh函数的定义(1)Walsh序的Walsh函数710n38logp82,,,,,例:N二进制码格雷码nb2b1b0g2g1g000000001001001201001130110104100110510111161101017111100012),1(),2(),3(),1(),(130ggggiWtRtRtRtiRtnWi1),1(),2(),3(),0(000tRtRtRtWW),1(),1(),2(),3(),1(100tRtRtRtRtWW),1(),2(),1(),2(),3(),2(110tRtRtRtRtRtWW),2(),1(),2(),3(),3(010tRtRtRtRtWW),2(),3(),1(),2(),3(),4(011tRtRtRtRtRtWW),1(),2(),3(),1(),2(),3(),5(011tRtRtRtRtRtRtWW),1(),3(),1(),2(),3(),6(101tRtRtRtRtRtWW),3(),1(),2(),3(),7(001tRtRtRtRtWW3.2沃尔什(Walsh)变换3.2.2Walsh函数1.连续Walsh函数的定义(1)Walsh序的Walsh函数1),0(tWW),1(),1(tRtWW),1(),2(),2(tRtRtWW),2(),3(tRtWW),2(),3(),4(tRtRtWW),1(),2(),3(),5(tRtRtRtWW),1(),3(),6(tRtRtWW),3(),7(tRtWW+1-1+1-1+1-11ttt11),1(tR),2(tR),3(tR+1-1+1-1+1-11ttt11),0(tWW),1(tWW),2(tWW),3(tWW),4(tWW),5(tWW),6(tWW),7(tWW11111tttttWalsh序的Walsh函数的特点:(1)是完备的正交函数,序号为偶数的是偶函数,序号为奇数的是奇函数;可用于正交变换。(2)一个周期内,过零点数与序号一致.3.2沃尔什(Walsh)变换3.2.2Walsh函数1.连续Walsh函数的定义(2)Paley序的Walsh函数(略)(3)Hadamard序的Walsh函数定义:iIpiHtiRtnW10),1(),(其中:Ii是n的二进制码的倒序码的第i位二进制码倒序码nb2b1b0I2I1I0000000010011002010010301111041000015101101611001171111111),1(),2(),3(),0(000tRtRtRtWH),3(),1(),2(),3(),1(001tRtRtRtRtWH3.2沃尔什(Walsh)变换3.2.2Walsh函数1.连续Walsh函数的定义(3)Hadamard序的Walsh函数定义:iIpiHtiRtnW10),1(),(1),0(tWW),1(),1(tRtWW),1(),2(),2(tRtRtWW),2(),3(tRtWW),2(),3(),4(tRtRtWW),1(),2(),3(),5(tRtRtRtWW),1(),3(),6(tRtRtWW),3(),7(tRtWW1),0(tWH),3(),1(tRtWH),2(),2(tRtWH),2(),3(),3(tRtRtWH),1(),4(tRtWH),1(),3(),5(tRtRtWH),1(),2(),6(tRtRtWH),1(),2(),3(),7(tRtRtRtWW3.2沃尔什(Walsh)变换3.2.2Walsh函数2.离散Walsh函数的定义定义:1010)(111)1()1(),(pigbpittbWiipiiiptnW(1)Walsh序的离散Walsh函数其中:110Nnn,,,为序号,110Ntt,,,为离散时间变量,位的格雷码的第为itttgiii)(1位的二进制码的第为ipnbip11Np2log3.2沃尔什(Walsh)变换3.2.2Walsh函数2.离散Walsh函数的定义定义:101)1(),(pigbWiiptnW(1)Walsh序的离散Walsh函数例:N=8,n=0,1,,7,t=0,1,,7计算WW(4,0)n=4=(100)2t=0=(000)2t的格雷码g=(000)21)1()1()1()1()1()1()1()0,4(000001202011022gbgbgbigbWiiW3.2沃尔什(Walsh)变换3.2.2Walsh函数2.离散Walsh函数的定义(1)Walsh序的离散Walsh函数例:N=8,n=0,1,,7,t=0,1,,7计算WW(4,t)1)7,4(1)6,4(1)5,4(1)4,4(1)3,4(1)2,4(1)1,4(1)0,4(同理,可求出:实际上,这个序列就是从连续的Walsh序的Walsh函数WW(4,t)在等间距的N个点上的抽样(取中间值)tWW(4,t)+1-1)0,4(WW)1,4(WW)2,4(WW11111111),4(tWW3.2沃尔什(Walsh)变换3.2.2Walsh函数2.离散Walsh函数的定义(1)Walsh序的离散Walsh函数例:N=8,n=0,1,,7,t=0,1,,7同理,可求出:WW(n,t)881111111111111111111111111111111111111111111111111111111111111111),7(),6(),5(),4(),3(),2(),1(),0(tWtWtWtWtWtWtWtt76543210n8W11111111),4(t沃尔什(Walsh)变换3.2.2Walsh函数2.离散Walsh函数的定义定义:10)1(),(pitbHiitnW(2)Hadamard序的离散Walsh函数例:N=8,n=0,1,,7,t=0,1,,7计算WH(4,t)11111111),4(tWH这个序列可看成从连续的Hadamard序的Walsh函数WH(4,t)在等间距的N个点上的抽样而得到。tWH(4,t)3.2沃尔什(Walsh)变换3.2.2Walsh函数2.离散Walsh函数的定义(2)Hadamard序的离散Walsh函数881111111111111111111111111111111111111111111111111111111111111111),7(),6(),5(),4(),3(),2(),1(),0(tWtWtWtWtWtWtWtWHHHHHHHH8HHadamard序的Walsh矩阵3.2沃尔什(Walsh)变换3.2.2Walsh函数3.Walsh矩阵881111111111111111111111111111111111111111111111111111111111111111),7(),6(),5(),4(),3(),2(),1(),0(tWtWtWtWtWtWtWt8W(1)Walsh序的Walsh矩阵4441111111111111111),3(),2(),1(),0(tWtWtWt沃尔什(Walsh)变换3.2.2Walsh函数3.Walsh矩阵(2)Hadamard序的Walsh矩阵0t,1),0(H,1111tWNH2221111),1(),0(H,2tWtWNWW4441111111111111111),3(),2(),1(),0(H,4tWtWtWtWN1111HHHH2222HHHH3.2沃尔什(Walsh)变换3.2.2Walsh函数3.Walsh矩阵(2)Hadamard序的Walsh矩阵4444HHHH4441111111111111111),3(),2(),1(),0(HtWtWtWt),7(),6(),5(),4(),3(),2(),1(),0(tWtWtWtWtWtWtWtWHHHHHHHHH3.2沃尔什(Walsh)变换3.2.2Walsh函数3.Walsh矩阵(2)Hadamard序的Walsh矩阵1,,1,0),1(),1(

1 / 45
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功