2015-2016学年江苏省镇江市新区八年级(上)月考数学试卷(10月份)一.选择题(每题3分,共24分)1.下面图案中是轴对称图形的有()A.1个B.2个C.3个D.4个2.下列语句中正确的有()句①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③一个轴对称图形不一定只有一条对称轴;④两个轴对称图形的对应点一定在对称轴的两侧.A.1B.2C.3D.43.如图,如果直线MC是多边形ABCDE的对称轴,其中∠A=130°,∠B=110°.那么∠BCD的度数等于()A.40°B.50°C.60°D.70°4.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一些块带去,就能配一块与原来一样大小的三角形?应该带()A.第1块B.第2块C.第3块D.第4块5.如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是()A.∠M=∠NB.AM=CNC.AB=CDD.AM∥CN6.已知△ABC≌△DEF,AB=2,AC=4,若△DEF的周长为偶数,则EF的取值为()A.3B.4C.5D.3或4或57.如图,△ABC≌△ADE,AB=AD,AC=AE,∠B=28°,∠E=95°,∠EAB=20°,则∠BAD等于()A.75°B.57°C.55°D.77°8.如图的2×4的正方形网格中,△ABC的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与△ABC成轴对称的格点三角形一共有()A.2个B.3个C.4个D.5个二.填空(每题2分,共20分)9.写出一个你熟悉的轴对称图形的名称:.10.图是平面镜里看到背向墙壁的电子钟示数,这时的实际时间应该是.11.已知,如图,AD=AC,BD=BC,O为AB上一点,那么,图中共有对全等三角形.12.如图,已知AC=DB,要使△ABC≌△DCB,则需要补充的条件为(填一个即可)13.如图,AE=BF,AD∥BC,AD=BC,则有△ADF≌,且DF=.14.已知△ABC和△DEF关于直线对称,若△ABC的周长为40cm,△DEF的面积为60cm2,DE=8cm则△DEF的周长为,△ABC的面积为,AB=.15.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=.16.在4×4的方格中有五个同样大小的正方形如图摆放,请你添加一个正方形到空白方格中,使它与其余五个正方形组成的新图形是一个轴对称图形,这样的添法共有种.17.如图,∠C=90°,AC=10,BC=5,AX⊥AC,点P和点Q从A点出发,分别在线段AC和射线AX上运动,且AB=PQ,当点P运动到AP=,△ABC与△APQ全等.18.将一张长方形纸片按如图所示的方式折叠,BC,BD为折痕,则∠CBD的度数为.三.简答题(8题共56分)19.已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.20.如图,在△ACD和△ABE中,CD与BE交于点O,下列三个说明:①AB=AC,②CE=BD,③∠B=∠C,请用其中两个作为条件,余下一个作为结论,编一道数学问题,并写出解答过程.解:条件:(填序号)结论:(填序号)理由:.21.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和点A1.(1)画出一个格点△A1B1C1,并使它与△ABC全等且A与A1是对应点;(2)画出点B关于直线AC的对称点D.22.如图,AC与BD交于点E,且AC=DB,AB=DC.求证:∠A=∠D.23.已知:如图,∠1=∠2,∠3=∠4,点E在BD上,连结AE、CE,求证:AE=CE.24.已知:如图,AB=DC,AE=BF,CE=DF,∠A=60°.(1)求∠FBD的度数.(2)求证:AE∥BF.25.已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,试问:DE和DF相等吗?说明理由.26.(14分)(2015秋•镇江月考)在△ABC中,AB=AC,D是线段BC的延长线上一点,以AD为一边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.(1)如图,点D在线段BC的延长线上移动,若∠BAC=40°,则∠DCE=°.(2)设∠BAC=m,∠DCE=n.①如图,当点D在线段BC的延长线上移动时,m与n之间有什么数量关系?请说明理由.②当点D在直线BC上(不与B、C重合)移动时,m与n之间有什么数量关系?请直接写出你的结论.2015-2016学年江苏省镇江市新区八年级(上)月考数学试卷(10月份)参考答案与试题解析一.选择题(每题3分,共24分)1.下面图案中是轴对称图形的有()A.1个B.2个C.3个D.4个考点:轴对称图形.分析:根据轴对称图形的概念:关于某条直线对称的图形叫轴对称图形,进而判断得出即可.解答:解:第1,2个图形沿某条直线折叠后直线两旁的部分能够完全重合,是轴对称图形,故轴对称图形一共有2个.故选:B.点评:此题主要考查了轴对称图形,轴对称的关键是寻找对称轴,两边图象折叠后可重合.2.下列语句中正确的有()句①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③一个轴对称图形不一定只有一条对称轴;④两个轴对称图形的对应点一定在对称轴的两侧.A.1B.2C.3D.4考点:轴对称的性质.分析:认真阅读4个小问题提供的已知条件,根据轴对称的性质,对题中条件进行一一分析,得到正确选项.解答:解:①关于一条直线对称的两个图形一定能重合,正确;②两个能重合的图形全等,但不一定关于某条直线对称,错误;③一个轴对称图形不一定只有一条对称轴,正确;④两个轴对称图形的对应点不一定在对称轴的两侧,还可以在对称轴上,错误.故选B.点评:本题考查轴对称的性质,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,找着每个问题的正误的具体原因是正确解答本题的关键.3.如图,如果直线MC是多边形ABCDE的对称轴,其中∠A=130°,∠B=110°.那么∠BCD的度数等于()A.40°B.50°C.60°D.70°考点:轴对称的性质.分析:根据对称的性质,找出相等的角,再根据五边形的内角和即可求解.解答:解:由轴对称性质可知:∠E=∠A=130°,∠D=∠B=110°,∴∠BCD=540°﹣130°×2﹣110°×2=60°.故选C.点评:考查轴对称图形性质应用,轴对称图形的对应角相等,找着相等的角是正确解答本题的关键.4.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一些块带去,就能配一块与原来一样大小的三角形?应该带()A.第1块B.第2块C.第3块D.第4块考点:全等三角形的应用.分析:本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.解答:解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选B.点评:本题主要考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS.5.如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是()A.∠M=∠NB.AM=CNC.AB=CDD.AM∥CN考点:全等三角形的判定.专题:几何图形问题.分析:根据普通三角形全等的判定定理,有AAS、SSS、ASA、SAS四种.逐条验证.解答:解:A、∠M=∠N,符合ASA,能判定△ABM≌△CDN,故A选项不符合题意;B、根据条件AM=CN,MB=ND,∠MBA=∠NDC,不能判定△ABM≌△CDN,故B选项符合题意;C、AB=CD,符合SAS,能判定△ABM≌△CDN,故C选项不符合题意;D、AM∥CN,得出∠MAB=∠NCD,符合AAS,能判定△ABM≌△CDN,故D选项不符合题意.故选:B.点评:本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,本题是一道较为简单的题目.6.已知△ABC≌△DEF,AB=2,AC=4,若△DEF的周长为偶数,则EF的取值为()A.3B.4C.5D.3或4或5考点:全等三角形的性质;三角形三边关系.分析:因为两个全等的三角形对应边相等,所以求EF的长就是求BC的长.解答:解:4﹣2<BC<4+22<BC<6.若周长为偶数,BC也要取偶数所以为4.所以EF的长也是4.故选B.点评:本题考查全等三角形的性质,全等三角形的对应边相等,以及三角形的三边关系.7.如图,△ABC≌△ADE,AB=AD,AC=AE,∠B=28°,∠E=95°,∠EAB=20°,则∠BAD等于()A.75°B.57°C.55°D.77°考点:全等三角形的性质.分析:先根据全等三角形的对应角相等得出∠B=∠D=28°,再由三角形内角和为180°,求出∠DAE=57°,然后根据∠BAD=∠DAE+∠EAB即可得出∠BAD的度数.解答:解:∵△ABC≌△ADE,∴∠B=∠D=28°,又∵∠D+∠E+∠DAE=180°,∠E=95°,∴∠DAE=180°﹣28°﹣95°=57°,∵∠EAB=20°,∴∠BAD=∠DAE+∠EAB=77°.故选D.点评:本题考查了全等三角形的性质,三角形内角和定理,比较简单.由全等三角形的对应角相等得出∠B=∠D=28°是解题的关键.8.如图的2×4的正方形网格中,△ABC的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与△ABC成轴对称的格点三角形一共有()A.2个B.3个C.4个D.5个考点:轴对称的性质.专题:网格型.分析:根据题意画出图形,找出对称轴及相应的三角形即可.解答:解:如图:共3个,故选B.点评:本题考查的是轴对称图形,根据题意作出图形是解答此题的关键.二.填空(每题2分,共20分)9.写出一个你熟悉的轴对称图形的名称:圆、矩形.考点:轴对称图形.专题:开放型.分析:关于某条直线对称的图形叫轴对称图形.解答:解:结合所学过的图形的性质,则有线段,等腰三角形,矩形,菱形,正方形,圆等.故答案为:圆、矩形等.点评:考查了轴对称图形的概念,需能够正确分析所学过的图形的对称性.10.图是平面镜里看到背向墙壁的电子钟示数,这时的实际时间应该是20:51.考点:镜面对称.分析:注意镜面对称的特点,并结合实际求解.解答:解:根据镜面对称的性质,因此12:05的真实图象应该是20:51.故答案为20:51.点评:解决此类问题要注意所学知识与实际情况的结合.11.已知,如图,AD=AC,BD=BC,O为AB上一点,那么,图中共有3对全等三角形.考点:全等三角形的判定.分析:由已知条件,结合图形可得△ADB≌△ACB,△ACO≌△ADO,△CBO≌△DBO共3对.找寻时要由易到难,逐个验证.解答:解:∵AD=AC,BD=BC,AB=AB,∴△ADB≌△ACB;∴∠CAO=∠DAO,∠CBO=∠DBO,∵AD=AC,BD=BC,OA=OA,OB=OB∴△ACO≌△ADO,△CBO≌△DBO.∴图中共有3对全等三角形.故答案为:3.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.12.如图,已知AC=DB,要使△ABC≌△DCB,则需要补充的条件为AB=DC(填一个即可)考点:全等三角形的判定.专题:开放型.分析:要使△ABC≌△DCB,由于BC是公共边,AC=DB是已知条件,若补充一组边相等,则可用SSS判定其全等,故可以添加条件:AB=DC.解答:解:可以添加条件:AB=DC,理由如下:在△ABC和△DCB中:,∴△ABC≌△DCB(SSS)