Lithium-SulfurBattery2017/10/15Contents01020304BriefIntrodctionProblems&DirectionsLiteratureSurveyDesignofElectrodeStructureGreatProspectsBriefIntrodctionEnvironmentalandenergyissuesGreenenergystoragedeviceSolutionPracticalspecificenergiesforsomerechargeablebatteries,alongwithestimateddrivingdistancesandpackprices.NatureMaterials.2012,11(1),19-29PrincipleBriefIntrodction(a)Illustrationofthecharge-dischargeprocessinrechargeableLi-Sbatteriesand(b)theformationofsolubleintermediateproducts(Li2S8,Li2S6,Li2S4)andinsolubleLi2S2/Li2SintheredoxprocessofS8cathode.TheReversibleReaction:Arepresentativedischarge–chargevoltageprofleofaLi–Scell,showingsequentialformationoflithiumpolysulfdesatdifferentredoxstages.NatEnergy2016,1(9):16132AccChemRes2013,46(5):1125Charge&DischargeProcessBriefIntrodction(1)(2)(3)(4)Anodicreactionprocess:S8→Li2S8→Li2S6→Li2S4→Li2S2/Li2STwodischargeplatforms(1:3)Typicallithium-sulfurbatteryforthefirstchargeanddischargecycleProcess1:S8→Li2S8;Platformvoltage:2.3→2.2VProcess2:Li2S8→Li2Sn;Viscosity→MaxProcess3:Li2Sn→Li2S2/Li2S2;Platformvoltage:2.1→1.9VMaincontributortothecapacityProcess4:Li2S2→Li2S;Bothnonconductive(s)→Severepolarization(5)PolysulfideAnodeNegativeelectrodediffuseProcess6:ShuttleEffect(6)(7)1、Lossofsulfur2、ConsumptionofLithium3、BatterypolarizationInthenegative,polysulfidecanalsobereducedJohnB.GoodenoughHotStuffArumugamManthiramLinda.F.NazarQiangZhangYiCuiBriefIntrodctionPublishedPapersAdvEnergyMater2014,4(7),1301473ACSNano2014,8(9),9295–9303NanoEnergy2014,9,229–236.Nanoscale2014,6(3),1653–1660Adv.Mater.2014,26(38),6622–6628.J.Mater.Chem.2012,22,24026–24033.Nano.Energy.2014,5,97–104.Patent*3BriefIntrodctionPoorconductivityShuttleeffectVolumeexpansionDendritesDiaphragmmodificationProblems(5.0×10-30Scm-1at25℃)↑InternalresistanceLowenergydensity↓ApertureConductivecarbon↓Li+transportcapacityElectrodesurfacemodificationElectrodestructuredesignCostincrease(Al2O3、nafion)ComplexprocessNanoscalemixingNegativeprotectivefilm(SEI、polish)ElectrolyteNotconsideredProblemsDirectionsElectrodestructureCMK-3/SNatureMaterials2009,8(6),500-506(a)Aschematicdiagramofsulfur(yellow)confinedwithintheinterconnectedporestructureofmesoporouscarbon(CMK-3).(b)TEM1、HighlyorderedStablestructure2、Capillarycomplexsulfur(at155℃)3、UsePEGtocoatCyclingperformanceofCMK-3/SmodifiedwithPEG(upperpoints,inblack)versusCMK-3/S(lowerpoints,inred)atarateof168mA/gatroomtemperatureabSpecificcapacityisgreatlyimprovedcomparedtobeforeGrapheneElectrodestructureSchematicgraphene–sulfurcomposites:(a)graphene-wrappedsulfurparticleand(b)sulfurmolecules(S8)dispersedongraphenesheetsSEMimage(a),STEMbrightfieldimage(b)andthecorrespondingelementalmappingforS(c)revealahomogeneoussulfurcoatingonthegraphenesheets.(d)Ramanspectrumofthegraphene–sulfurcomposite.EnergEnvironSci2013,6(4),1283-1289Amixtureofpyrolyticgraphiteandsulfuristreatedwithhighenergyballmilling.Yolk–ShellElectrodestructure(a)S–TiO2yolk–shellnanostructures.(b)SEMimageand(c)TEMimage.CapacityretentionofS–TiO2yolk–shellnanostructurescycledat0.5CNatCommun2013,4(4):1331Representsthebestperformanceforlong-cyclelithium–sulphurbatteries.CoatsulphurnanoparticleswithTiO2toformS–TiO2core–shellnanostructures,followedbypartialdissolutionofsulphurintoluene.AdvancesYolk–Shellin2017Template(~500nm)Particlesize(1nm)S-Volume(70%~80%)CoulumbicEfficiency(~99%)Small2017,13,1700087NanoEnergy38(2017)12–18NanoEnergy38(2017)239–248AFM2017,27,1702524HowaboutcarbonnanotubesAdvancesCNTsfrom2012to2014AnodeCurrent(mA/g)NumberofcyclesCapacity(mAh/g)Capacityretention(%)Ref.MWCNTs/S(80wt%)1.5–2.5V60675J.PowerSources2009,189(2),1141-1146SWCNTs/S1.0C100550PartPartSystChar2013,30(2),158-165VerticalalignedCNTs/S(90wt%)1.0-3.0V20800J.PowerSources2012,213,239-248CoatingMaterialLiteratureSurveyPEDOT:PSS、PEG、PVDFandothersFurtherimprovementDopingelementN(5wt%)、B、PMakeholesinthesurfaceScompositemethodmelt-diffusion(155℃)、Vaporpermeation、OrganicSulfide、H2S800℃~900℃Thankyou