第十章静电场中的导体和电介质§10-1静电场中的导体一、导体的静电平衡1、金属导体的电结构及静电感应(1)金属导体:由带正电的晶格和带负电的自由电子组成.带电导体:总电量不为零的导体;中性导体:总电量为零的导体;孤立导体:与其他物体距离足够远的导体.“足够远”指其他物体的电荷在该导体上激发的场强小到可以忽略.(2)静电感应过程:导体内电荷分布与电场的空间分布相互影响的过程.(3)静电平衡状态:导体中自由电荷没有定向移动的状态.2、导体静电平衡条件(1)从场强角度看:①导体内任一点,场强;②导体表面上任一点与表面垂直.证明:由于电场线与等势面垂直,所以导体表面附近的电场强度必定与该处表面垂直.说明:①静电平衡与导体的形状和类别无关.②“表面”包括内、外表面;(2)从电势角度也可以把上述结论说成:静电平衡时导体为等势体.①导体内各点电势相等;②导体表面为等势面.证明:在导体上任取两点A,B,.由于=0,所以.(插话:空间电场线的画法.由于静电平衡的导体是等势体,表面是等势面.因此,导体正端发出的电场线绝对不会回到导体的负端.应为正电荷发出的电场线终于无穷远,负电荷发出的电场线始于无穷远.)二、静电平衡时导体上的电荷分布1、导体内无空腔时电荷分布如图所示,导体电荷为Q,在其内作一高斯面S,高斯定理为:导体静电平衡时其内,,即.S面是任意的,导体内无净电荷存在.结论:静电平衡时,净电荷都分布在导体外表面上.2、导体内有空腔时电荷分布(1)腔内无其它电荷情况如图所示,导体电量为Q,在其内作一高斯面S,高斯定理为:由于静电平衡时,导体内因此,即S内净电荷为0,空腔内无其它电荷,静电平衡时,导体内又无净电荷空腔内表面上的净电荷为0.讨论:在空腔内表面上能否出现符号相反的电荷,等量的正负电荷?我们设想,假如有在这种可能,如图所示,在A点附近出现+q,B点附近出现-q,这样在腔内就分布始于正电荷上终于负电荷的电力线,由此可知,,但静电平衡时,导体为等势体,即,因此,假设不成立.结论:静电平衡时,腔内表面无净电荷分布,净电荷都分布在外表面上,(腔内电势与导体电势相同).(2)空腔内有点电荷情况如图所示,导体电量为Q,其内腔中有点电荷+q,在导体内作一高斯面S,高斯定理为静电平衡时,.又因为此时导体内部无净电荷,而腔内有电荷+q,腔内表面必有感应电荷-q.结论:静电平衡时,腔内表面有感应电荷-q,外表面有感应电荷+q.3、导体表面附近的电场强度和电荷面密度的关系(1)导体表面上电荷分布设在导体表面上某一面积元(很小)上,电荷分布如图所示,过边界作一闭合柱面,S上下底、均与平行,S侧面与垂直,柱面的高很小,即与非常接近,此柱面并且是关于对称的.S作为高斯面,高斯定理为(注意与无限大带电平面的区别).结论:导体表面附近,.(2)导体表面曲率对电荷分布影响理论证明某些规则形状的孤立导体带电后,在表面上曲率越大的地方场强越强,必大,所以曲率大的地方电荷面密度大;导体曲率较小处,表面电荷面密度也较小;在表面凹进去的地方(曲率为负),电荷密度更小.但不是绝对结论.(3)、尖端放电尖端附近场强较大,该处的空气可能被电离成导体而出现尖端放电现象.如图,BC相对AC更容易放电.“电晕”:离子撞击空气分子时,有时能量较小不能使分子电离,但能使分子获得高能量而跃迁到高能级,返回基态时就会发出光子,在尖端出现暗淡的光环.夜晚高压线周围笼罩的绿色光晕.“电风”:金属针接起电机,针尖紧贴蜡烛焰.假设金属针带足量正电荷,针尖附近场强足够大,电离空气分子,吸引负电荷离子,排斥正电荷离子,则正电荷离子吹向蜡烛焰,形成“电风”.4、静电屏蔽(1)空腔内无带电体.由于空腔中的场强处处为零,放在空腔中的物体,就不会受到外电场的影响,所以空心金属球体对于放在它的空腔内的物体有保护作用,使物体不受外电场影响.(2)空腔导体接地.由于空腔外表面电荷因接地而与大地中和,所以腔内物体带电不影响腔外物体.静电屏蔽现象:空腔导体可以保护腔内物体不受腔外电荷和电场的影响,或接地的空腔导体可以保护外部物体不受腔内电荷和电场的影响.应用:如电话线从高压线下经过,为了防止高压线对电话线的影响,在高压线与电话线之间装一金属网等.例10-1:在电荷+q的电场中,放一不带电的金属球,从球心到点电荷所在距离处的矢径为,试问(1)金属球上净感应电荷?(2)这些感应电荷在球心处产生的场强?解:(1)0(2)球心处场强(静电平衡要求),即+q在处产生的场强与感应电荷在处产生场强的矢量和=0.方向指向+q.(感应电荷在处产生电势=?球电势=?选无穷远处电势=0.)P49.课本例题例10.1;10.2§10-2电介质的电极化和有介质时的高斯定理一、电介质的电结构1、结构电介质:通常所说的绝缘体,常温下电阻率在108-1018Ω•m范围内.主要特征:它的分子中电子被原子核束缚的很紧,介质内几乎没有自由电子,其导电性能很差.与导体的主要区别:在外电场作用下达静电平衡时,电介质内部的场强不为零.2、电介质分类(2类)(1)无极分子电介质:无外电场时,分子正负电荷中心重合(如等).其固有电矩为零,对外不显电性.(2)有极分子电介质:即使无外电场时,分子的正负电荷中心也不重合(如:等).由于分子热运动的无规则性,在物理小体积内的平均电偶极矩仍为零,因而也没有宏观电偶极矩分布(对外不显电性).分子正负电荷中心不重合时相当于一电偶极子.二、电介质的极化1、电极化现象实验表明,将电容器充电后,再去掉电源,然后将某种电介质(如:玻璃,硬橡胶等)插入电容器之间,会发现极板间电压减小了.由知,E减小了.那么E是如何减少的呢?从平板电容场强公式知,E的减小,意味着电介质与极板的近邻处的电荷面密度减小了.但是,极板上的电荷没变,即电荷面密度没变,这种改变只能是电介质上的两个表面出现了如图所示的正、负电荷.电介质在外电场作用下,其表面或体内出现净电荷的现象称为电介质的极化.电极化时电介质表面处出现的净电荷称为极化电荷(属于束缚电荷范畴),称为自由电荷.可见,电荷面密度(自由电荷面密度)-(极化电荷面密度),即减小了.(束缚电荷受到限制,束缚电荷量比自由电荷少的多,故比少的多.)E减小.更直观的解释是,产生的场强与产生的场强相反,所以它的场强为,即减小了,这也可以解释实验结果.2、两类电介质的极化(1)无极分子的位移极化无极分子在没有受到外电场作用时,它的正负电荷的中心是重合的,因而没有电偶极矩,如图a所示,但当外电场存在时,它的正负电荷的中心发生相对位移,形成一个电偶极子,其偶极矩方向沿外电场方向,如图b所示.对一块介质整体来说,由于电介质中每一个分子都成为电偶极子,所以,它们在电介质中排列如图,在电介质内部,相邻电偶极子正负电荷相互靠近,因而对于均匀电介质来说,其内部仍是电中性的,但在和外电场垂直的两个端面上就不同了.由于电偶极子的负端朝向电介质一面,正端朝向另一面,所以电介质的一面出现负电荷,一面出现正电荷,显然这种正负电荷是不能分离的,故为束缚电荷.结论:无极分子的电极化是由于分子的正负电荷的中心在外电场的作用下发生相对位移的结果,这种电极化称为位移电极化.(2)有极分子的取向极化有极分子本身就相当于一个电偶极子,在没有外电场时,由于分子做不规则热运动,这些分子偶极子的排列是杂乱无章的,如图d所示,所以电介质内部呈电中性.当有外电场时,每一个分子都受到一个电力矩作用,如图所示,这个力矩要使分子偶极子转到外电场方向,只是由于分子的热运动,各分子偶极子不能完全转到外电场的方向,只是部分地转到外电场的方向,即所有分子偶极子不是很整齐地沿着外电场方向排列起来,如图f所示.但随着外电场的增强,排列整齐的程度要增大.无论排列整齐的程度如何,在垂直外电场的两个端面上都产生了束缚电荷.结论:有极分子的电极化是由于分子偶极子在外电场的作用下发生转向的结果,故这种电极化称为转向电极化.说明:在静电场中,两种电介质电极化的微观机理显然不同,但是宏观结果即在电介质中出现束缚电荷的效果时确是一样的,故在宏观讨论中不必区分它们.(3)附加电场由于电介质极化后出现极化电荷,介质内空间一点的场强:.:介质外的电荷产生的电场,即外电场;:介质上的极化电荷产生的电场.对均匀电介质,外场为匀强电场时,介质内的与方向严格相反,大小||||.作用是减小介质内电场的,..(插话:1、对电介质的要求对于均匀电介质,极化电荷只出现在电介质表面;对于不均匀电介质,极化电荷出现在表面和内部.一般考虑均匀电介质.均匀电介质:电介质的物理和化学性质各处一致.比如,密度均匀,力学、热学、光学、电磁效应各处一致.2、极化电荷与自由电荷极化电荷:电介质因极化而出现在电介质表面(或体内)的宏观电荷;自由电荷:在外场作用下可以自由运动的宏观电荷.(1)极化电荷是束缚电荷的宏观表现,是束缚在晶格上的分子中的电子作的微小位移,或者整个分子作微小旋转所引起的.因此,极化电荷的运动范围不能超出分子线度;而自由电荷是由于原子或分子的电离或者金属中自由电子的重新分布引起的,它的活动范围可以是整个物体或物体之间;(2)极化电荷不能转移,自由电荷可以转移;可略(3)极化电荷可以吸附导体中自由电荷,但不能被中和掉,而自由电荷可以被中和.3、静电场中的电介质与静电场中的导体(1)它们都会因受电场的作用而出现宏观电荷;这些电荷反过来又会影响电场,这种影响都削弱了原电场;(比较微观本质的不同)(2)都会达到稳定状态——电介质的稳定极化状态和导体的静电平衡状态.(比较微观本质的不同)导体处于静电平衡状态时,表面的感应电荷在导体内产生的感应电场能把外电场完全抵消,导体内场强处处为零;而电介质被极化后,表面出现的极化电荷在介质内产生的电场不能完全抵消外电场,介质内存在电场.)3、电偶极子在外场受到的力和力矩均匀外场下,电偶极子所受总静电力:;总力矩:(10.3)虽然=0,但不为0.的效果将使电偶极矩旋转到与外电场方向一致,使趋于0,形成稳定状态.三、电极化强度、极化电荷与极化强度的关系1、定义.电极化强度矢量定义为(10.4)即电极化强度矢量是单位体积内分子电矩的矢量和.当外电场越强时,极化现象越显著,单位体积内的分子电矩矢量和就越大,极化强度就越大.反之,外电场越弱,极化现象不显著,单位体积内的分子电矩矢量和就越小.可见,电极化强度矢量可以用来描述电介质的极化程度.上式给出的极化强度是点的函数,一般来说,介质中不同点的电极化强度矢量不同.但对于均匀的无极分子电介质处在均匀的外电场中,,其中n是分子数密度(单位体积的分子数),p是极化后电介质每个分子的电矩矢量.在国际单位制中,电极化强度矢量的单位为库仑/米2(C/m2).2、电极化强度与束缚电荷的关系由于束缚电荷是电介质极化的结果,所以束缚电荷与电极化强度之间一定存在某种定量关系.为方便讨论,现以无极分子电介质为例来讨论,考虑电介质内某一小面元dS,设其电场E的方向(因而P的方向)与dS的法线方向成θ角(如图6.7所示),由于E的作用,分子的正负电荷中心将沿电场方向拉开距离l.为简化分析,假定负电荷不动,而正电荷沿E的方向发生位移l.在面元dS后侧取一斜高为l,底面积为dS的体元dV.由于电场E的作用,此体元内所有分子的正电荷中心将穿过dS面到前侧去.以q表示每个分子的正电荷量,则由于电极化而越过dS面元的总电荷为(1)介质表面处dS是电介质的表面,由于电介质极化(10.5)是其外法向单位矢.讨论:(2)封闭曲面处由于极化穿过有限面积S的电荷为,若dS是封闭曲面,则穿过整个封闭曲面的电荷为.因为电介质是电中性的,据电荷守恒定律,则得由电介质极化而在封闭面内净余的束缚电荷为(10.6)(10.6)可称为“极化强度的高斯定理”.从闭合面内向外的极化强度的通量,等于从闭合面内移出去的极化电荷的量.结论:式(10.5)和式(10.6)就是由于介质极化而产生的束缚电荷与电极化强度的关系.从(10.6)可以看出,在均匀外电场中,均匀电介质内部的任何体元内都不会有净余束缚电荷,束缚电荷