©2014ANSYS,Inc.1May7,2014ANSYSEBU系列网络培训课程HFSS电磁仿真算法的选择与应用技巧袁勇博士yong.yuan@ansys.comANSYS中国北区技术经理©2014ANSYS,Inc.2May7,20141电磁仿真算法概述2HFSS算法演变历程3各算法特点与应用(FEM,IE,PO,FEM-IE,PEM,Transient)4在线Q&A内容提要©2014ANSYS,Inc.3May7,20141电磁仿真算法概述2HFSS算法演变历程3各算法特点与应用(FEM,IE,PO,FEM-IE,PEM,Transient)4在线Q&A内容提要©2014ANSYS,Inc.4May7,2014麦克斯韦方程组麦克斯韦最伟大的成就是用一组方程数学公理化的方法把经典电磁学理论形式化、系统化,把前人互补相关的观测、实验、和电学、磁学、光学的方程,融合成一个自洽的理论,即麦克斯韦方程组。麦克斯韦在电磁学上取得的的成就被誉为继艾萨克·牛顿之后,“物理学的第二次大统一”——维基百科詹姆斯·克拉克·麦克斯韦1831-1879©2014ANSYS,Inc.6May7,2014计算电磁学精确全波算法频域方法FD积分方程法IE矩量法MoM微分方程法DE有限元法FEM时域方法TD时域有限差分FDTD时域有限积分FIT时域间断伽略金DGTD高频近似算法基于波前光学物理光学法PO基于射线光学几何光学法GO计算电磁学与电磁仿真算法高性能并行场路协同仿真多物理场协同仿真算法加速多算法融合©2014ANSYS,Inc.7May7,20141电磁仿真算法概述2HFSS算法演变历程3各算法特点与应用(FEM,IE,PO,FEM-IE,PEM,Transient&HPC)4在线Q&A内容提要©2014ANSYS,Inc.8May7,2014HFSS更新历史v12•2009.09•IE算法•DDMHPC•混合阶基函数v13•2010.12•Transient算法•FEM-IE混合算法:FE-BI•全过程MPv14•2011.12•FEM-IE:IE-Region•PO算法•阵列天线FDDMv15•2012.12•求解器加速•混合算法增强•FDDM升级v2014R15•2013.12•3DLayout•HPC增强•多功能•多层级•易用性©2014ANSYS,Inc.9May7,2014HFSS的研发重点先进的算法技术•混合算法求解•多区域分解DDM•电路-3D场耦合仿真•高级建模HPC•多层次DSO/DDM•充分利用硬件资源•兼容各种平台与系统自动化•层级化组合设计•按需求解•虚拟合规验证•多物理场集成•SPDM仿真过程与数据管理Mh-MSMSM+M-ch-hShS©2014ANSYS,Inc.10May7,20141电磁仿真算法概述2HFSS算法演变历程3各算法特点与应用(FEM,IE,PO,FEM-IE,PEM,Transient)4在线Q&A内容提要©2014ANSYS,Inc.11May7,2014•有限元法FiniteElementMethod•HFSS主模块•有效处理复杂材料与几何结构•体网格,体积内场完全求解•可得到频域和时域求解结果•积分方程法IntegralEquations•HFSS-IE选项模块•高效求解开放辐射和散射问题•面网格,仅求解表面电流•结构主要是金属时效果更好•物理光学PhysicalOptics•HFSS-IE选项模块•高频近似算法•电大、平滑金属体有效混合算法HFSS电磁仿真算法•瞬态算法Transient•HFSS-Transient选项模块•适合求解场随空间和时间变化的问题©2014ANSYS,Inc.12May7,2014HFSS算法特点与应用——有限元法FEM©2014ANSYS,Inc.13May7,2014无以伦比的全波三维电磁场求解器•已有二十多年的商用历史•目前业界最成熟稳定的三维电磁场求解器•擅长求解任意介质复杂三维结构•充分考虑材料特性:趋肤效应、介质损耗、频变材料HFSSFEM特色技术•自适应共形网格剖分、网格加密、曲线型网格•切向矢量基函数、混合阶基函数•强大的矩阵求解技术:直接法、迭代法、区域分解法•超限单元法精确快速抽取端口S参数•快速扫频技术•……有限元法FiniteElementMethod(FEM)©2014ANSYS,Inc.14May7,2014KeytoSuccess:自适应网格技术RectilinearmeshelementCurvilinearmeshelement初始网格自适应加密后的网格©2014ANSYS,Inc.15May7,2014HFSS自适应求解过程自适应端口细化求解量化网格精度网格细化加密扫频分析YesNoMax(|DS|)goal?自适应网格生成GeometryInitialMeshConvergedMesh初始网格网格细化扫频分析电网格加密/波长细化几何网格初始网格©2014ANSYS,Inc.16May7,2014Example:自动自适应网格剖分自动自适应网格技术•提供自动、精确且高效的求解•一般无需进行手动网格加密网格剖分算法•网格剖分技术自适应加密剖分整个几何结构•迭代过程增加网格,在需要更细网格以获得更精确场特性的区域获得精度和效率的最佳平衡Convergencevs.AdaptivePass每步自适应迭代过程的网格©2014ANSYS,Inc.17May7,2014收敛判据ConvergenceCriteriaAdaptivemeshloophastwoexitcriteria:•MaximumNumberofPasses(Time)Controlshowmanyadaptivepassesareallowedtobeperformed15isareasonableinitialvalue•Ifvalueistoolow,solutionwillcompletebeforeanaccuratemeshiscreatedbytheadaptivesolutionprocess•Solutionwilllikelytakefewerthan15passestoconvergeandwillstopwhenconvergencecriteriaismet•ConvergencePerPass(Accuracy)Indicatesthesolution’ssensitivitytomeshvariationsRelatestotheaccuracyofthesolutionConvergencePlot©2014ANSYS,Inc.18May7,2014MaxΔS的含义•在HFSS迭代求解的过程中,后一次求解得到的S参数与前一次得到的S参数矢量相减,得到的差矢量的幅度中最大的一个•同时包含了幅度和相位的变化•举例:两端口的网络迭代求解结果为:NNNNNSSSS22211211S1221211121111NNNNNSSSSSDNNNNNNNNSSSSSSSSS22122211211211211111magmaxMaxNNSSMaxSMaxD1February1,2012ANSYS,Inc.Proprietary©2009ANSYS,Inc.Allrightsreserved.February23,2009Inventory#002593©2012ANSYS,Inc.6-19Release14.0•MaximumDeltaS–AlwayssettheDeltaSwithyourerrortoleranceinmind.–ConsidertheworstcasescenarioswhensettingtheMaximumDeltaS•AworstcasemagnitudeerrorcanbedeterminedbyassumingtheS-parametermagnitudeistheonlysourceoferror(phaseisperfectlyaccurate).•Mostlikelyactualsolutionismuchclosersincetheerrorwillbesplitbetweenthemagnitude&phaseAsolvevalueof0.98couldbebetween0.99and0.97SettingTheMaximumDeltaSCriteria1DNNSSMaxSMax±0.01*plotsassumeasymptoticconvergenceLinearUnitsdBUnitsAsolvevalueofS=0.98couldbebetween0.99and0.97whenusing|DS|=0.01ExpectedRangefor|S|=0.98&Max(|DS|)=0.01©2014ANSYS,Inc.20May7,2014Radiation边界应用实例Radiation边界条件λ/4λ/4λ/4λ/4天线:强辐射问题传输线:弱辐射问题必须大于λ/4可以小于λ/4©2014ANSYS,Inc.21May7,2014Radiation边界与入射角度Radiationboundaryfunctionswellforincidentangleslessthan25°-30°RadiationBoundaryRadiationBoundaryPoorabsorptionofradiationboundaryaffectsradiationpattern©2014ANSYS,Inc.22May7,2014Radiation边界与距离RadiationBoundaryseparationdistance•Exampleprobe-fedcircularpatch•Varieddistancebetweenabsorbingboundarycondition(ABC)andantennaλ/20,λ/10,λ/8,λ/4,λ/2,3λ/4,λ•Examinedimpactonreturnlossandgain/4andcaseswithin13MHzofeachother(0.1%)0.2dBvariation©2014ANSYS,Inc.23May7,2014PerfectlyMatchedLayer•Fictitiouslossyanisotropicmaterialwhichfullyabsorbselectromagneticfields•TwotypesofPMLapplications“PMLobjectsacceptfreeradiation”ifPMLterminatesfreespace“PMLobjectscontinueguidedwaves”ifPMLterminatestransmissionline•GuidelinesforassigningPMLboundariesUsePMLsetupwizardformostcasesManuallycreateaPMLwhenbaseobjectiscurvedorinhomogeneous•ParameterstoDefine:DefinePMLThicknessSpecifyMinimumFrequency(FromSweep)SpecifyMinimumDistancefromAntennatoPML(MeasureinModel)PerfectlyMatchedLayer(PML)February1,2012ANSYS,Inc.Proprietary©2009ANSYS,Inc.Allrightsreserved.February23,2009Inventory#002593©2012ANSYS,Inc.6-24Release14.0•PMLSetupWizard–Helpscr