2019年上海市九年级中考数学第一轮模拟试卷含解析一、选择题(本大题共6题,每题4分,满分24分)1.(4分)如图,已知AB∥CD∥EF,BD:DF=1:2,那么下列结论正确的是()A.AC:AE=1:3B.CE:EA=1:3C.CD:EF=1:2D.AB:CD=1:22.(4分)下列命题中,正确的是()A.两个直角三角形一定相似B.两个矩形一定相似C.两个等边三角形一定相似D.两个菱形一定相似3.(4分)已知二次函数y=ax2﹣1的图象经过点(1,﹣2),那么a的值为()A.a=﹣2B.a=2C.a=1D.a=﹣14.(4分)如图,直角坐标平面内有一点P(2,4),那么OP与x轴正半轴的夹角α的余切值为()A.2B.C.D.5.(4分)设m,n为实数,那么下列结论中错误的是()A.m(n)=(mn)B.(m+n)=m+nC.m()=m+mD.若m=,那么=6.(4分)若⊙A的半径为5,圆心A的坐标是(1,2),点P的坐标是(5,2),那么点P的位置为()A.在⊙A内B.在⊙A上C.在⊙A外D.不能确定二、填空题(本大题共12题,每题4分,满分48分)7.(4分)抛物线y=x2﹣1的顶点坐标是.8.(4分)将二次函数y=2x2的图象向右平移3个单位,所得图象的对称轴为.9.(4分)请写出一个开口向下且过点(0,2)的抛物线解析式:.10.(4分)若2||=3,那么3||=.11.(4分)甲、乙两地的实际距离为500千米,甲、乙两地在地图上的距离为10cm,那么图上4.5cm的两地之间的实际距离为千米.12.(4分)如果两个相似三角形的周长的比等于1:4,那么它们的面积的比等于.13.(4分)Rt△ABC中,∠C=90°,AB=2AC,那么sinB=.14.(4分)直角三角形的重心到直角顶点的距离为4cm,那么该直角三角形的斜边长为.15.(4分)如图,四边形ABCD中,AB∥DC,点E在CB延长线上,∠ABD=∠CEA,若3AE=2BD,BE=1,那么DC=.16.(4分)⊙O的直径AB=6,C在AB延长线上,BC=2,若⊙C与⊙O有公共点,那么⊙C的半径r的取值范围是.17.(4分)我们将等腰三角形腰长与底边长的差的绝对值称为该三角形的“边长正度值”,若等腰三角形腰长为5,“边长正度值”为3,那么这个等腰三角形底角的余弦值等于.18.(4分)如图,Rt△ABC中,∠ACB=90°,AC=4,BC=5,点P为AC上一点,将△BCP沿直线BP翻折,点C落在C′处,连接AC′,若AC′∥BC,那么CP的长为.三、解答题(本大题共7题,满分78分)19.(10分)计算:sin30°tan30°+cos60°cot30°.20.(10分)已知:如图,在△ABC中,AB=AC,点E、F在边BC上,∠EAF=∠B.求证:BF•CE=AB2.21.(10分)如图,已知:△ABC中,点D、E分别在AB、AC上,AB=9,AC=6,AD=2,AE=3.(1)求的值;(2)设=,=,求(用含、的式子表示).22.(10分)如图,已知:Rt△ABC中,∠ACB=90°,点E为AB上一点,AC=AE=3,BC=4,过点A作AB的垂线交射线EC于点D,延长BC交AD于点F.(1)求CF的长;(2)求∠D的正切值.23.(12分)地铁10号线某站点出口横截面平面图如图所示,电梯AB的两端分别距顶部9.9米和2.4米,在距电梯起点A端6米的P处,用1.5米的测角仪测得电梯终端B处的仰角为14°,求电梯AB的坡度与长度.参考数据:sin14°≈0.24,tan14°≈0.25,cos14°≈0.97.24.(12分)如图,已知:二次函数y=x2+bx的图象交x轴正半轴于点A,顶点为P,一次函数y=x﹣3的图象交x轴于点B,交y轴于点C,∠OCA的正切值为.(1)求二次函数的解析式与顶点P坐标;(2)将二次函数图象向下平移m个单位,设平移后抛物线顶点为P′,若S△ABP=S△BCP,求m的值.25.(14分)如图,已知:梯形ABCD中,∠ABC=90°,∠DAB=45°,AB∥DC,DC=3,AB=5,点P在AB边上,以点A为圆心AP为半径作弧交边DC于点E,射线EP于射线CB交于点F.(1)若AP=,求DE的长;(2)联结CP,若CP=EP,求AP的长;(3)线段CF上是否存在点G,使得△ADE与△FGE相似?若相似,求FG的值;若不相似,请说明理由.2019年上海市宝山区中考数学一模试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)1.【解答】解:∵AB∥CD∥EF,∴AC:CE=BD:DF=1:2,即CE=2AC,∴AC:CE=1:3,CE:EA=2:3.故选:A.2.【解答】解:两个直角三角形不一定相似,两个矩形不一定相似,两个菱形不一定相似,而两个等边三角形一定相似.故选:C.3.【解答】解:把(1,﹣2)代入y=ax2﹣1得a﹣1=﹣2,解得a=﹣1.故选:D.4.【解答】解:过点P作PA⊥x轴于点A.由于点P(2,4),∴PA=4,OA=2∴cotα==.故选:B.5.【解答】解:A、如果m、n为实数,那么m(n)=(mn),故本选项结论正确;B、如果m、n为实数,那么(m+n)=m+n,故本选项结论正确;C、如果m、n为实数,那么m()=m+m,故本选项结论正确;D、如果m为实数,那么若m=,那么m=0或=,故本选项结论错误.故选:D.6.【解答】解:∵圆心A的坐标是(1,2),点P的坐标是(5,2),∴AP==4<5,∴点P在⊙A内,故选:A.二、填空题(本大题共12题,每题4分,满分48分)7.【解答】解:抛物线y=x2﹣1的顶点坐标为(0,﹣1).故答案是:(0,﹣1).8.【解答】解:将二次函数y=2x2的图象向右平移3个单位,所得解析式为:y=2(x﹣3)2,故其图象的对称轴为:直线x=3.故答案为:直线x=3.9.【解答】解:∵开口向下且过点(0,2)的抛物线解析式,∴可以设顶点坐标为(0,2),故解析式为:y=﹣x2+2(答案不唯一).故答案为:y=﹣x2+2(答案不唯一).10.【解答】解:由2||=3得到:||=,故3||=3×=.故答案是:.11.【解答】解:∵甲、乙两地的实际距离为500千米,甲、乙两地在地图上的距离为10cm,∴比例尺==,设图上4.5cm的两地之间的实际距离为xcm,则=,解得x=22500000,∵22500000cm=225km,∴图上4.5cm的两地之间的实际距离为225千米.故答案为:225.12.【解答】解:∵两个相似三角形的周长的比等于1:4,∴它们的相似比为1:4,∴它们的面积的比等于1:16.故答案为:1:16.13.【解答】解:由题意,得sinB==,故答案为:.14.【解答】解:由题意得,CG=4,∵点G是△ABC的重心,∴CD=CG=6,CD是△ABC的中线,在Rt△ACB中,∠ACB=90°,CD是△ABC的中线,∴AB=2CD=12(cm),故答案为:12cm.15.【解答】解:∵AB∥DC,∴∠ABD=∠BDC,∵∠ABD=∠CEA,∴∠AEB=∠BDC,∴∠EAB=180°﹣∠AEB﹣∠ABE,∠CBD=180°﹣∠ABD﹣∠ABE,∴∠EAB=∠CBD,∴△AEB∽△BDC,∴=,∵3AE=2BD,BE=1,∴CD=,故答案为:.16.【解答】解:∵⊙O的直径AB=6,C在AB延长线上,BC=2,∴CA=8,∵⊙C与⊙O有公共点,即⊙C与⊙O相切或相交,∴r=2或r=8或2<r<8,即2≤r≤8.故答案为2≤r≤8.17.【解答】解:设等腰三角形的底边长为a,|5﹣a|=3,解得,a=2或a=8,当a=2时,这个等腰三角形底角的余弦值是:,当a=8时,这个等腰三角形底角的余弦值是:,故答案为:或18.【解答】解:过点C'作C'D⊥BC于点D,∵A'C∥BC,∠ACB=90°,∴∠C'AC=∠ACB=90°,且C'D⊥BC,∴四边形C'DCA是矩形,∴CD=AC',C'D=AC=4,∵折叠∴BC'=BC=5,CP=C'P,在Rt△BDC'中,BD==3∴CD=BC﹣BD=2∴AC'=2,在Rt△AC'P中,C'P2=C'A2+AP2,∴CP2=4+(4﹣CP)2,∴CP=故答案为:三、解答题(本大题共7题,满分78分)19.【解答】解:原式=×+×=.20.【解答】证明:∵∠AEC=∠B+∠BAE=∠EAF+∠BAE=∠BAF,又∵AB=AC,∴∠B=∠C,∴△ABF∽△ECA,∴AB:CE=BF:AC,∴BF•EC=AB•AC=AB2.21.【解答】解:(1)∵∠AED=∠ABC,∠A=∠A∴△ADE∽△ACB,∴===,即=.(2)=+=﹣+.22.【解答】解:(1)∵∠ACB=90°,∴∠ACF=∠ACB=90°,∠B+∠BAC=90°,∵AD⊥AB,∴∠BAC+∠CAF=90°,∴∠B=∠CAF,∴△ABC∽△FAC,∴=,即=,解得CF=;(2)如图,过点C作CH⊥AB于点H,∵AC=3,BC=4,∴AB=5,则CH==,∴AH==,EH=AE﹣AH=,∴tanD=tan∠ECH==.23.【解答】解:作BC⊥PA交PA的延长线于点C,作QD∥PC交BC于点D,由题意可得,BC=9.9﹣2.4=7.5米,QP=DC=1.5米,∠BQD=14°,则BD=BC﹣DC=7.5﹣1.5=6米,∵tan∠BQD=,∴tan14°=,即0.25=,解得,ED=18,∴AC=ED=18,∵BC=7.5,∴tan∠BAC==,即电梯AB的坡度是5:12,∵BC=7.5,AC=18,∠BCA=90°,∴AB==19.5,即电梯AB的坡度是5:12,长度是19.5米.24.【解答】解:(1)∵y=x﹣3,∴x=0时,y=﹣3,当y=0时,x﹣3=0,解得x=6,∴点B(6,0),C(0,﹣3),∵tan∠OCA==,∴OA=2,即A(2,0),将A(2,0)代入y=x2+bx,得4+2b=0,解得b=﹣2,∴y=x2﹣2x=(x﹣1)2﹣1,则抛物线解析式为y=x2﹣2x,顶点P的坐标为(1,﹣1);(2)如图,由平移知点P′坐标为(1,﹣1﹣m),设抛物线对称轴与x轴交于点H,与BC交于点M,则M(1,﹣),S△ABP′=AB•P′H=×4(m+1)=2(m+1),S△BCP′=S△P′MC+S△P′MB=P′M•OB=|﹣1﹣m+|×6=3|﹣m|,∴2(m+1)=3|﹣m|,解得m=或m=.25.【解答】解:(1)如图1中,过点A,作AH∥BC,交CD的延长线于点H.∵AB∥CD,∴∠ABC+∠C=180°,∵∠ABC=90°,∴∠C=∠ABC=∠H=90°,∴四边形AHCB是矩形,∴AB=CH=5,∵CD=3,∴DH=CH﹣CD=2,∵∠HAB=90°,∠DAB=45°,∴∠HAD=∠HDA=45°∴HD=AH=2,AE=AP=,根据勾股定理得,HE==3,则ED=1;(2)连接CP,设AP=x.∵AB∥CD,∴∠EPA=∠CEP,即等腰△APE、等腰△PEC两个底角相等,∴△APE∽△PEC,∴=,即:PE2=AE•CE,而EC=2PB=2(5﹣x),即:PC2=CE•AP=2(5﹣x)x,而PC2=PB2+BC2,即:PC2=(5﹣x)2+22,∴2(5﹣x)x=(5﹣x)2+22,解得:x=(不合题意值已舍去),即:AP=;(3)如图3中,在线段CF上取一点G,连接EG.设∠F=α,则∠APE=∠AEP=∠BPF=90°﹣α,则:∠EAP=180°﹣2∠APE=2α,∵△ADE∽△FGE,设∠DAE=∠F=α,由∠DAB=45°,可得3α=45°,2α=30°,在Rt△ADH中,AH=DH=2,在Rt△AHE中,∠HEA=∠EAB=2α=30°,∠HAE=60°,∴HE=AH•tan∠HAE=2,∴DE=HE﹣HD=2﹣2,EC=HC﹣HE=5﹣2,∵△ADE∽△FGE,∴∠ADC=∠EGF=135°,则∠CEG=45°,∴EG=E