四川省成都市武侯区2019届中考数学模拟试题一.选择题(每题3分,满分30分)1.下列各数中,其相反数等于本身的是()A.﹣1B.0C.1D.20182.下面四个立体图形,从正面、左面、上面对空都不可能看到长方形的是()A.B.C.D.3.在Rt△ABC中,∠C=90°,AB=5,BC=3,则cosA=()A.B.C.D.4.一元二次方程x2+6x+9=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根5.如图,在平行四边形ABCD中,E是DC上的点,DE:EC=2:1,连接AE交BD于点F,则△DEF与△BAF的面积之比为()A.3:2B.2:3C.9:4D.4:96.下列说法正确的是()A.两个直角三角形一定相似B.两个相似图形一定是位似图形C.两个菱形一定相似D.两个正三角形一定相似7.在⊙O中,P为其内一点,过点P的最长弦的长为8cm,最短的弦的长为4cm,则OP的长为()A.cmB.cmC.2cmD.1cm8.一个公园有A,B,C三个入口和D,E二个出口小明进入公园游玩,从“A口进D口出”的概率为()A.B.C.D.9.反比例函数y=图象经过A(1,2),B(n,﹣2)两点,则n=()A.1B.3C.﹣1D.﹣310.如图,正方形ABCD的边长为定值,E是边CD上的动点(不与点C,D重合),AE交对角线BD于点F,FG⊥AE交BC于点G,GH⊥BD于点H.现给出下列命题:①AF=FG;②FH的长度为定值.则A.①是真命题,②是真命题B.①是真命题,②是假命题C.①是假命题,②是真命题D.①是假命题,②是假命题二.填空题(满分16分,每小题4分)11.如果,那么锐角A的度数为.12.函数y=中,自变量x的取值范围是.13.如图,M是△ABC的BC边上的一点,AM的延长线交△ABC的外接圆于D,已知:AD=12cm,BD=CD=6cm,则DM的长为cm.14.如图,菱形ABCD的对角线AC、BD相交于点O,tan∠DAC=,则∠DAB的度数为.三.解答题(共6小题,满分54分)15.(12分)(1)计算:(2019﹣π);(2)解方程:3x(1﹣x)=2x﹣2.16.(6分)先化简,再求值:,其中x=﹣1.17.(8分)为了传承中华民族优秀传统文化,我市某中学举行“汉字听写”比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成图1的条形统计图和图2扇形统计图,但均不完整.请你根据统计图解答下列问题:(1)求参加比赛的学生共有多少名?并补全图1的条形统计图.(2)在图2扇形统计图中,m的值为,表示“D等级”的扇形的圆心角为度;(3)组委会决定从本次比赛获得A等级的学生中,选出2名去参加全市中学生“汉字听写”大赛.已知A等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率.18.(8分)在一次数学综合实践活动中,小明计划测量城门大楼的高度,在点B处测得楼顶A的仰角为22°,他正对着城楼前进21米到达C处,再登上3米高的楼台D处,并测得此时楼顶A的仰角为45°.(1)求城门大楼的高度;(2)每逢重大节日,城门大楼管理处都要在A,B之间拉上绳子,并在绳子上挂一些彩旗,请你求出A,B之间所挂彩旗的长度(结果保留整数).(参考数据:sin22°≈,cos22°≈,tan22°≈)19.(10分)在平面直角坐标系中,一次函数y=﹣x+b的图象与反比例函数y=(k≠0)图象交于A、B两点,与y轴交于点C,与x轴交于点D,其中A点坐标为(﹣2,3).(1)求一次函数和反比例函数解析式.(2)若将点C沿y轴向下平移4个单位长度至点F,连接AF、BF,求△ABF的面积.(3)根据图象,直接写出不等式﹣x+b>的解集.20.(10分)如图,已知AB是圆O的直径,F是圆O上一点,∠BAF的平分线交⊙O于点E,交⊙O的切线BC于点C,过点E作ED⊥AF,交AF的延长线于点D.(1)求证:DE是⊙O的切线;(2)若DE=3,CE=2,①求的值;②若点G为AE上一点,求OG+EG最小值.四.填空题(共5小题,满分20分,每小题4分)21.已知m、n是一元二次方程x2+4x﹣1=0的两实数根,则=.22.课本上,在画y=图象之前,通过讨论函数表达式中x,y的符号特征以及取值范围,猜想出y=的图象在第一、三象限.据此经验,猜想函数y=的图象在第象限.23.从﹣1,0,1,2,3这5个数中,随机抽取一个数记为a,使得二次函数y=2x2﹣4x﹣1当x>a时,y随x的增大而增大,且使关于x的分式方程+2=有整数解的概率为.24.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC的中点,N是A'B'的中点,连接MN,若BC=4,∠ABC=60°,则线段MN的最大值为.25.如图正方形ABCD的边长为3,点E是AB上的一点,将△BCE沿CE折叠至△FCE,若CF,CE恰好与以正方形ABCD的中心为圆心的⊙O相切,则折痕CE的长为.五.解答题(共3小题,满分30分)26.(8分)如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m时,桥洞与水面的最大距离是5m.(1)经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是(填方案一,方案二,或方案三),则B点坐标是,求出你所选方案中的抛物线的表达式;(2)因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度.27.(10分)如图1,△ABC中,AC=BC,∠A=30°,点D在AB边上且∠ADC=45°.(1)求∠BCD的度数;(2)将图1中的△BCD绕点B顺时针旋转α(0°<α≤360°)得到△BC′D′.①当点D′恰好落在BC边上时,如图2所示,连接C′C并延长交AB于点E.求证:AE=BD′;②连接DD′,如图3所示,当△DBD′与△ACB相似时,直接写出α的度数.28.(12分)如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P的坐标;(3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM周长的最小值;若不存在,请说明理由.参考答案一.选择题1.解:相反数等于本身的数是0.故选:B.2.解:A、主视图为三角形,左视图为三角形,俯视图为有对角线的矩形,故本选项错误;B、主视图为等腰三角形,左视图为等腰三角形,俯视图为圆,从正面、左面、上面观察都不可能看到长方形,故本选项正确;C、主视图为长方形,左视图为长方形,俯视图为圆,故本选项错误;D、主视图为长方形,左视图为长方形,俯视图为长方形,故本选项错误.故选:B.3.解:AC===4,则cosA==.故选:C.4.解:∵△=62﹣4×1×9=0,∴一元二次方程x2+6x+9=有两个相等的实数根.故选:A.5.解:∵四边形ABCD为平行四边形,∴CD∥AB,∴△DEF∽△BAF.∵DE:EC=2:1,∴==,∴=()2=.故选:D.6.解:A、两个直角三角形一定相似,错误,因为对应的锐角不一定相等;B、两个相似图形一定是位似图形,错误,相似图形不一定位似;C、两个菱形一定相似,错误,菱形的对应角不一定相等;D、两个正三角形一定相似,正确.故选:D.7.解:如图所示,CD⊥AB于点P.根据题意,得:AB=8cm,CD=4cm.∵CD⊥AB,∴CP=CD=2.根据勾股定理,得OP==2(cm).故选:A.8.解:根据题意画树形图:共有6种等情况数,其中“A口进D口出”有一种情况,从“A口进D口出”的概率为;故选:D.9.解:∵反比例函数y=图象经过A(1,2),B(n,﹣2)两点,∴k=1×2=﹣2n.解得n=﹣1.故选:C.10.(1)证明:连接CF,在正方形ABCD中,AB=BC,∠ABF=∠CBF=45°,在△ABF和△CBF中,,∴△ABF≌△CBF(SAS),∴AF=CF,∠BAF=∠BCF,∵FG⊥AE,∴在四边形ABGF中,∠BAF+∠BGF=360°﹣90°﹣90°=180°,又∵∠BGF+∠CGF=180°,∴∠BAF=∠CGF,∴∠CGF=∠BCF∴CF=FG,∴AF=FG;(2)连接AC交BD于O.∵四边形ABCD是正方形,HG⊥BD,∴∠AOF=∠FHG=90°,∵∠OAF+∠AFO=90°,∠GFH+∠AFO=90°,∴∠OAF=∠GFH,∵FA=FG,∴△AOF≌△FHG,∴FH=OA=定值,故①②正确,故选:A.二.填空题(共4小题,满分16分,每小题4分)11.解:∵cosA=,∴锐角A的度数为30°.故答案为:30°.12.解:函数y=中,自变量x的取值范围是x﹣1≠0,即x≠1,故答案为:x≠1.13.解:∵BD=DC,∴弧BD=弧DC,∴∠DCB=∠DAC,∵∠ADC=∠ADC,∴△DMC∽△DCA,∴=,∴=,∴DM=3,故答案为:3.14.解:∵菱形ABCD的对角线AC、BD相交于点O,tan∠DAC=,∴∠DAC=30°,∠DAC=∠CAB,∴∠DAB=2∠DAC=60°.故答案为:60°.三.解答题(共6小题,满分54分)15.解:(1)原式=1+9﹣(2﹣)+3×﹣6×=10﹣2++﹣2=8;(2)∵3x(1﹣x)=﹣2(1﹣x),∴3x(1﹣x)+2(1﹣x)=0,则(1﹣x)(3x+2)=0,∴1﹣x=0或3x+2=0,解得:x1=1,x2=﹣.16.解:原式=÷=•=﹣,当x=﹣1时,原式=﹣1.17.解:(1)根据题意得:3÷15%=20(人),∴参赛学生共20人,则B等级人数20﹣(3+8+4)=5人.补全条形图如下:(2)C等级的百分比为×100%=40%,即m=40,表示“D等级”的扇形的圆心角为360°×=72°,故答案为:40,72.(3)列表如下:男女女男(男,女)(男,女)女(女,男)(女,女)女(女,男)(女,女)所有等可能的结果有6种,其中恰好是一名男生和一名女生的情况有4种,则P(恰好是一名男生和一名女生)==.18.解:(1)作AF⊥BC交BC于点F,交DE于点E,如右图所示,由题意可得,CD=EF=3米,∠B=22°,∠ADE=45°,BC=21米,DE=CF,∵∠AED=∠AFB=90°,∴∠DAE=45°,∴∠DAE=∠ADE,∴AE=DE,设AF=a米,则AE=(a﹣3)米,∵tan∠B=,∴tan22°=,即,解得,a=12,答:城门大楼的高度是12米;(2)∵∠B=22°,AF=12米,sin∠B=,∴sin22°=,∴AB=32,即A,B之间所挂彩旗的长度是32米.19.解:(1)∵一次函数y=﹣x+b的图象与反比例函数y=(k≠0)图象交于A(﹣3,2)、B两点,∴3=﹣×(﹣2)+b,k=﹣2×3=﹣6∴b=,k=﹣6∴一次函数解析式y=﹣x+,反比例函数解析式y=(2)根据题意得:解得:,∴S△ABF=×4×(4+2)=12(3)由图象可得:x<﹣2或0<x<420.(1)证明:连接OE∵OA=OE∴∠OAE=∠OEA∵AE平分∠BAF∴∠OAE=∠EAF∴∠OEA=∠EAF∴OE∥AD∵ED⊥AF∴∠D=90°∴∠OED=180°﹣∠D=90°∴OE⊥DE∴DE是⊙O的切线(2)解:①连接BE∵AB是⊙O直径∴∠AEB=90°∴∠BED=∠D=90°,∠BAE+∠ABE=90°∵BC是⊙O的切线∴∠ABC=∠ABE+∠CBE=90°∴∠BAE=∠CBE∵∠DAE=∠BAE∴∠DAE=∠CBE∴△ADE∽△BEC∴∵DE=3,CE=2∴②过点E作EH⊥AB于H,过点G作GP∥AB交EH于P,过点P作PQ∥OG交AB于Q∴EP⊥PG,四边形OGPQ是平行四边形∴∠EPG=90°,PQ=OG∵∴设BC=2x,AE=3x∴AC=AE+CE=3x+2∵∠B