高等(近代)测量平差复习资料第一章第一节绪论1、近代测量平差理论的主要内容⑴从独立观测值到相关观测值——相关平差⑵从函数模型和随机模型满秩到函数模型和随机模型奇异——秩亏自由网平差⑶从非随机参数到随机参数以及随机参数与非随机参数一并处理——最小二乘滤波、推估和配置⑷从先验定权到后验定权——随机模型的验后估计⑸从整体解算到分开解算——序贯平差⑹从处理静态数据到处理动态数据——动态测量平差⑺从线性模型的参数估计到非线性模型的参数估计——非线性平差⑻从确定性平差模型到不确定性平差模型——不确定性平差模型的处理⑼从偶然误差的处理到含有系统误差的处理——附加系统参数的平差⑽从无偏估计到有偏估计⑾从偶然误差的处理到含有粗差的处理——数据探测法与稳健估计第三节广义逆矩阵1、广义逆g逆:AGA=A解不唯一2、反射g逆:AGA=A,GAG=G解不唯一3、最小范数广义逆AGA=A,(GAT)=GA解不唯一4、最小二乘广义逆AGA=A,(AGT)=AG解不唯一5、最小二乘最小范数广义逆AGA=A,GAG=G,(GAT)=GA,(AGT)=AG解唯一第二章秩亏自由网平差第一节概述1、平差时必要的起算个数称为基准2、基准数据:测角网d=4测边网、导线网、边角网d=3GPS网d=5高程网d=1三维控制网d=73、没有足够起算数据的平差问题称为秩亏自由网平差4、秩亏自由网平差类型:普通秩亏自由网平差、拟稳平差、加权秩亏自由网平差例2-2-1课本19页例2-3-1课本27页例2-4-1课本30页第五节控制网附加阵G1水准网:GT=(111……1)2GT=10100……101011……0-Y10X10-Y20X20……-Ym0Xm03二维测角网GT=第六节1、权逆阵奇异的原因⑴观测值向量中的一些分量是另一些分量的线性组合⑵观测值向量中的一些分量无误差2、权逆阵奇异的平差原则VTPV=VTP*V=V1TP1V1=min第三章最小二乘滤波推估和配置第一节1、与观测值之间有函数关系的已测点参数称为滤波信号,求定滤波信号最佳估值的过程称为滤波2、与观测值之间没有函数关系的未测点参数称为推估信号,求定推估信号最佳估值的过程称为推估3、配置:最小二乘配置的函数模型L=BX+AY+△⑴当A=0或Y=0时模型变为L=BX+△,即高斯—马尔可夫模型⑵当B=0或X=0时模型变为L=AY+△即滤波和推估模型⑶当S’=0时模型变为L=A1S+△即滤波模型第二节1、滤波的函数模型:L=AY+△L为观测向量,Y为随机参数A=[A10]Y=[]滤波的随机模型:-1E(△)=0,D(△)=D△=P△,E(L)=uLD(L)=DLE(Y)=D(Y)=Cov(△,s)=D△,Cov(△,S’)=D△2、配置的函数模型:L=BX+AY+△L为观测向量,Y为随机参数A=[A10]Y=[]滤波的随机模型:-1E(△)=0,D(△)=D△=P△,E(L)=uLD(L)=DLE(Y)=D(Y)=Cov(△,s)=D△,Cov(△,S’)=D△第五章1、卡尔曼滤波的基本思想:采用信号与噪声的状态空间模型,利用前一时刻的估计值和现时刻的观测值来更新状态变量的估计,求出现时刻的估计值。2、滤波:根据过去直到现在时刻的观测值估计现时的状态的过程预测:根据过去的状态和观测值预测未来状态的过程第2/3页平滑:根据过去和现在的观测值重新估计过去状态的过程3、序贯平差的计算过程⑴根据平差问题的具体情况,将观测值分成m组,其中第一组的观测值的个数必须大于必要观测数⑵对第一组观测值进行平差,求x1,Qx1和V1⑶根据第k组观测值的系数阵Bk、常数项lk以及权阵Pk,计算Jk,lkT⑷根据公式计算xk,Qk、VPV⑸反复进行34步,直到全部观测数据处理结束为止会计算例5-2-1第八章有偏估计与系统误差处理1、附加系统参数的平差方法的基本思想:在仅含有偶然误差函数模型的基础上,加入一些系统参数,用以抵偿观测数据中存在的系统误差对平差结果的影响2、附加系统参数平差模型:L+△=BX+AS22-1DLL=D△△=σ0Q=σ0P第九章抗差估计与粗差处理1、数据探测法的处理思想:在最小二乘平差之前探测和定为粗差,剔除含有粗差的观测值,从而得到一组比较净化的观测值,然后用这组净化的观测值进行最小二乘平差。2、抗差估计(稳健估计)的处理思想:根据逐次迭代平差的结果不断修正观测值的权或方差,最终使含有粗差的观测值的权趋向于零或者方差趋向于无穷大,以保证所估计的参数少受模型误差,特别是粗差的影响。3、抗差估计(稳健估计):保证所估计的参数不受或少受模型误差特别是少受粗差影响的一种参数估计方法。4、抗差估计一次范数最小法步骤:a、列出误差方程V=BX-lTTb、令p1=p2=p3=……pn=组成法方程BPX-Bl=0c、计算参数x和改正数vd、计算权函数w1、w2……wnTTe|、再组成法方程BWBx-BWl=0f、再计算参数x和改正数v,并进而再定权函数w1、w2……wng、上述步骤进行迭代,直至两次迭代之差小于限值。