遗传算法解决非线性规划问题的Matlab程序

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

。-可编辑修改-非线性整数规划的遗传算法Matlab程序(附图)通常,非线性整数规划是一个具有指数复杂度的NP问题,如果约束较为复杂,Matlab优化工具箱和一些优化软件比如lingo等,常常无法应用,即使能应用也不能给出一个较为令人满意的解。这时就需要针对问题设计专门的优化算法。下面举一个遗传算法应用于非线性整数规划的编程实例,供大家参考!模型的形式和适应度函数定义如下:这是一个具有200个01决策变量的多目标非线性整数规划,编写优化的目标函数如下,其中将多目标转化为单目标采用简单的加权处理。functionFitness=FITNESS(x,FARM,e,q,w)%%适应度函数%输入参数列表%x决策变量构成的4×50的0-1矩阵%FARM细胞结构存储的当前种群,它包含了个体x。-可编辑修改-%e4×50的系数矩阵%q4×50的系数矩阵%w1×50的系数矩阵%%gamma=0.98;N=length(FARM);%种群规模F1=zeros(1,N);F2=zeros(1,N);fori=1:Nxx=FARM{i};ppp=(1-xx)+(1-q).*xx;F1(i)=sum(w.*prod(ppp));F2(i)=sum(sum(e.*xx));endppp=(1-x)+(1-q).*x;f1=sum(w.*prod(ppp));f2=sum(sum(e.*x));Fitness=gamma*sum(min([sign(f1-F1);zeros(1,N)]))+(1-gamma)*sum(min([sign(f2-F2);zeros(1,N)]));针对问题设计的遗传算法如下,其中对模型约束的处理是重点考虑的地方function[Xp,LC1,LC2,LC3,LC4]=MYGA(M,N,Pm)%%求解01整数规划的遗传算法。-可编辑修改-%%输入参数列表%M遗传进化迭代次数%N种群规模%Pm变异概率%%输出参数列表%Xp最优个体%LC1子目标1的收敛曲线%LC2子目标2的收敛曲线%LC3平均适应度函数的收敛曲线%LC4最优适应度函数的收敛曲线%%参考调用格式[Xp,LC1,LC2,LC3,LC4]=MYGA(50,40,0.3)%%第一步:载入数据和变量初始化loadeqw;%载入三个系数矩阵e,q,w%输出变量初始化Xp=zeros(4,50);LC1=zeros(1,M);LC2=zeros(1,M);LC3=zeros(1,M);LC4=zeros(1,M);Best=inf;%%第二步:随机产生初始种群farm=cell(1,N);%用于存储种群的细胞结构。-可编辑修改-k=0;whilek%以下是一个合法个体的产生过程x=zeros(4,50);%x每一列的1的个数随机决定fori=1:50R=rand;Col=zeros(4,1);ifR0.7RP=randperm(4);%1的位置也是随机的Col(RP(1))=1;elseifR0.9RP=randperm(4);Col(RP(1:2))=1;elseRP=randperm(4);Col(RP(1:3))=1;endx(:,i)=Col;end%下面是检查行和是否满足约束的过程,对于不满足约束的予以抛弃Temp1=sum(x,2);Temp2=find(Temp120);iflength(Temp2)==0。-可编辑修改-k=k+1;farm{k}=x;endend%%以下是进化迭代过程counter=0;%设置迭代计数器whilecounter%%第三步:交叉%交叉采用双亲双子单点交叉newfarm=cell(1,2*N);%用于存储子代的细胞结构Ser=randperm(N);%两两随机配对的配对表A=farm{Ser(1)};%取出父代AB=farm{Ser(2)};%取出父代BP0=unidrnd(49);%随机选择交叉点a=[A(:,1:P0),B(:,(P0+1):end)];%产生子代ab=[B(:,1:P0),A(:,(P0+1):end)];%产生子代bnewfarm{2*N-1}=a;%加入子代种群newfarm{2*N}=b;%以下循环是重复上述过程fori=1:(N-1)A=farm{Ser(i)};。-可编辑修改-B=farm{Ser(i+1)};P0=unidrnd(49);a=[A(:,1:P0),B(:,(P0+1):end)];b=[B(:,1:P0),A(:,(P0+1):end)];newfarm{2*i-1}=a;newfarm{2*i}=b;endFARM=[farm,newfarm];%新旧种群合并%%第四步:选择复制FLAG=ones(1,3*N);%标志向量,对是否满足约束进行标记%以下过程是检测新个体是否满足约束fori=1:(3*N)x=FARM{i};sum1=sum(x,1);sum2=sum(x,2);flag1=find(sum1==0);flag2=find(sum1==4);flag3=find(sum220);iflength(flag1)+length(flag2)+length(flag3)0FLAG(i)=0;%如果不满足约束,用0加以标记endend。-可编辑修改-NN=length(find(FLAG)==1);%满足约束的个体数目,它一定大于等于NNEWFARM=cell(1,NN);%以下过程是剔除不满主约束的个体kk=0;fori=1:(3*N)ifFLAG(i)==1kk=kk+1;NEWFARM{kk}=FARM{i};endend%以下过程是计算并存储当前种群每个个体的适应值SYZ=zeros(1,NN);syz=zeros(1,N);fori=1:NNx=NEWFARM{i};SYZ(i)=FITNESS2(x,NEWFARM,e,q,w);%调用适应值子函数endk=0;%下面是选择复制,选择较优的N个个体复制到下一代whilekminSYZ=min(SYZ);posSYZ=find(SYZ==minSYZ);POS=posSYZ(1);。-可编辑修改-k=k+1;farm{k}=NEWFARM{POS};syz(k)=SYZ(POS);SYZ(POS)=inf;end%记录和更新,更新最优个体,记录收敛曲线的数据minsyz=min(syz);meansyz=mean(syz);pos=find(syz==minsyz);LC3(counter+1)=meansyz;ifminsyzBest=minsyz;Xp=farm{pos(1)};endLC4(counter+1)=Best;ppp=(1-Xp)+(1-q).*Xp;LC1(counter+1)=sum(w.*prod(ppp));LC2(counter+1)=sum(sum(e.*Xp));%%第五步:变异fori=1:NifPmrand%是否变异由变异概率Pm控制AA=farm{i};%取出一个个体POS=unidrnd(50);%随机选择变异位。-可编辑修改-R=rand;Col=zeros(4,1);ifR0.7RP=randperm(4);Col(RP(1))=1;elseifR0.9RP=randperm(4);Col(RP(1:2))=1;elseRP=randperm(4);Col(RP(1:3))=1;end%下面是判断变异产生的新个体是否满足约束,如果不满足,此次变异无效AA(:,POS)=Col;Temp1=sum(AA,2);Temp2=find(Temp120);iflength(Temp2)==0farm{i}=AA;endendendcounter=counter+1。-可编辑修改-end%第七步:绘收敛曲线图figure(1);plot(LC1);xlabel('迭代次数');ylabel('子目标1的值');title('子目标1的收敛曲线');figure(2);plot(LC2);xlabel('迭代次数');ylabel('子目标2的值');title('子目标2的收敛曲线');figure(3);plot(LC3);xlabel('迭代次数');ylabel('适应度函数的平均值');title('平均适应度函数的收敛曲线');figure(4);plot(LC4);xlabel('迭代次数');ylabel('适应度函数的最优值');title('最优适应度函数的收敛曲线');。-可编辑修改-贴出一幅运行得到的收敛曲线

1 / 11
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功