排列组合问题的常见十二种解法

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第1页共3页排列组合问题的常见十二种解法福州高级中学陈锦平联系实际生动有趣的排列组合问题,思路灵活,题型多样,因此解决排列组合问题,必须认真审题,弄清楚问题,抓住问题的本质.解决排列组合综合性问题的一般步骤如下四步:1.弄清题目要做什么事;2.怎样做才能完成所要做的事(采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类);3.确定每一步或每一类(排列问题(有序)还是组合(无序)问题);4.解决排列组合综合性问题,一般先分类再分步.一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数?解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位,从1,3,5三个数中任选一个共有13C排法;然后排首位,从2,4和剩余的两个奇数中任选一个共有14C种排法;最后排中间三个数,从剩余四个数中任选3个的排列数共有34A种排法;∴由分步计数原理得113434288CCA二.相邻元素捆绑策略例2.7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法?解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排.由分步计数原理可得共有522522480AAA种不同的排法.乙甲丁丙三.不相邻问题插空策略例3.一晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?解:分两步进行第一步排2个相声和3个独唱共有55A种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种46A不同的方法,由分步计数原理,节目的不同顺序共有5456AA四.定序问题倍缩空位插入策略例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法?解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,C14A34C13第2页共3页则共有不同排法种数是:7733AA(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有47A种方法,其余的三个位置甲乙丙共有1种坐法,则共有47A种方法.(七个空位坐了四人,剩下3个空位按一定顺序坐下甲,乙,丙)思考:可以先让甲乙丙就坐吗?(插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有3474CA方法.(先选三个座位坐下甲,乙,丙共有37C种选法,余下四个空位排其它四人共有44A种排法,所以共有3474CA种方法.)五.重排问题求幂策略例5.把6名实习生分配到7个车间实习,共有多少种不同的分法?解:完成此事共分六步:把第一名实习生分配到车间有7种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原理共有67种不同的排法六.环排问题直排策略例6.8人围桌而坐,共有多少种坐法?解:围桌而坐与坐成一排的不同点在于,坐成圆形没有首尾之分,所以固定一人44A并从此位置把圆形展成直线其余7人共有(81)!7!种排法,即7!7654321840种HFDCAABCDEABEGHGF七.多排问题直排策略例7.8人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法?解:8人排前后两排,相当于8人坐8把椅子,可以把椅子排成一排.先排前4个位置,2个特殊元素有24A种排法,再排后4个位置上的特殊元素丙有14A种,其余的5人在5个位置上任意排列有55A种,则共有215445AAA种排法.(排好后,按前4个为前排,后4人为后排分成两排即可)八.排列组合混合问题先选后排策略例8.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法?解:第一步从5个球中选出2个组成复合元共有25C种方法.再把4个元素(包含一个复合元素)装入4个不同的盒内有44A种方法,根据分步计数原理装球的方法共有2454CA九.小集团问题先整体后局部策略例9.用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数在1,5在两个第3页共3页奇数之间,这样的五位数有多少个?(注:两个偶数2,4在两个奇数1,5之间,这是题意,说这个结构不能被打破,故3只能排这个结构的外围,也就是说要把这个结构看成一个整体与3进行排列).解:把1,5,2,4当作一个小集团与3排队共有22A种排法,再排小集团内部共有2222AA种排法,由分步计数原理共有222222AAA种排法.十.元素相同问题隔板策略例10.有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案?解:因为10个名额没有差别,把它们排成一排.相邻名额之间形成9个空隙.在9个空档中选6个位置插个隔板,可把名额分成7份,对应地分给7个班级,每一种插板方法对应一种分法共有69C种分法.十一.正难则反总体淘汰策略例11.从0,1,2,3,4,5,6,7,8,9这十个数字中取出三个数,使其和为不小于10的偶数,不同的取法有多少种?解:这问题中如果直接求不小于10的偶数很困难,可用总体淘汰法.这十个数字中有5个偶数5个奇数,所取的三个数含有3个偶数的取法有35C,只含有1个偶数的取法有1255CC,和为偶数的取法共有123555CCC.再淘汰和小于10的偶数共9种,符合条件的取法共有1235559CCC十二.平均分组问题除法策略例12.6本不同的书平均分成3堆,每堆2本共有多少分法?解:分三步取书得222642CCC种方法,但这里出现重复计数的现象,不妨记6本书为ABCDEF,若第一步取AB,第二步取CD,第三步取EF该分法记为(AB,CD,EF),则222642CCC中还有(AB,EF,CD),(CD,AB,EF),(CD,EF,AB)(EF,CD,AB),(EF,AB,CD)共有33A种取法,而这些分法仅是(AB,CD,EF)一种分法,故共有22264233CCCA种分法.排列组合历来是学习中的难点,通过我们平时做的练习题,不难发现排列组合题的特点是条件隐晦,不易挖掘,题目多变,解法独特,数字庞大,难以验证.同学们只有对基本的解题策略熟练掌握.根据它们的条件,就可以选取不同的技巧来解决问题.对于一些比较复杂的问题,可以将几种策略结合起来应用把复杂的问题简单化,举一反三,触类旁通,进而为后续学习打下坚实的基础.

1 / 3
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功