磁盘阵列RAID技术简述

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

磁盘阵列RAID技术简述(转)在计算机发展的初期,“大容量”硬盘的价格还相当高,解决数据存储安全性问题的主要方法是使用磁带机等设备进行备份,这种方法虽然可以保证数据的安全,但查阅和备份工作都相当繁琐。1987年,Patterson、Gibson和Katz这三位工程师在加州大学伯克利分校发表了题为《ACaseofRedundantArrayofInexpensiveDisks(廉价磁盘冗余阵列方案)》的论文,其基本思想就是将多只容量较小的、相对廉价的硬盘驱动器进行有机组合,使其性能超过一只昂贵的大硬盘。这一设计思想很快被接受,从此RAID技术得到了广泛应用,数据存储进入了更快速、更安全、更廉价的新时代。磁盘阵列对于个人电脑用户,还是比较陌生和神秘的。印象中的磁盘阵列似乎还停留在这样的场景中:在宽阔的大厅里,林立的磁盘柜,数名表情阴郁、早早谢顶的工程师徘徊在其中,不断从中抽出一块块沉重的硬盘,再插入一块块似乎更加沉重的硬盘……终于,随着大容量硬盘的价格不断降低,个人电脑的性能不断提升,IDE-RAID作为磁盘性能改善的最廉价解决方案,开始走入一般用户的计算机系统。一、RAID技术规范简介RAID技术主要包含RAID0~RAID7等数个规范,它们的侧重点各不相同,常见的规范有如下几种:RAID0:RAID0连续以位或字节为单位分割数据,并行读/写于多个磁盘上,因此具有很高的数据传输率,但它没有数据冗余,因此并不能算是真正的RAID结构。RAID0只是单纯地提高性能,并没有为数据的可靠性提供保证,而且其中的一个磁盘失效将影响到所有数据。因此,RAID0不能应用于数据安全性要求高的场合。RAID1:它是通过磁盘数据镜像实现数据冗余,在成对的独立磁盘上产生互为备份的数据。当原始数据繁忙时,可直接从镜像拷贝中读取数据,因此RAID1可以提高读取性能。RAID1是磁盘阵列中单位成本最高的,但提供了很高的数据安全性和可用性。当一个磁盘失效时,系统可以自动切换到镜像磁盘上读写,而不需要重组失效的数据。RAID0+1:也被称为RAID10标准,实际是将RAID0和RAID1标准结合的产物,在连续地以位或字节为单位分割数据并且并行读/写多个磁盘的同时,为每一块磁盘作磁盘镜像进行冗余。它的优点是同时拥有RAID0的超凡速度和RAID1的数据高可靠性,但是CPU占用率同样也更高,而且磁盘的利用率比较低。RAID2:将数据条块化地分布于不同的硬盘上,条块单位为位或字节,并使用称为“加重平均纠错码(海明码)”的编码技术来提供错误检查及恢复。这种编码技术需要多个磁盘存放检查及恢复信息,使得RAID2技术实施更复杂,因此在商业环境中很少使用。RAID3:它同RAID2非常类似,都是将数据条块化分布于不同的硬盘上,区别在于RAID3使用简单的奇偶校验,并用单块磁盘存放奇偶校验信息。如果一块磁盘失效,奇偶盘及其他数据盘可以重新产生数据;如果奇偶盘失效则不影响数据使用。RAID3对于大量的连续数据可提供很好的传输率,但对于随机数据来说,奇偶盘会成为写操作的瓶颈。RAID4:RAID4同样也将数据条块化并分布于不同的磁盘上,但条块单位为块或记录。RAID4使用一块磁盘作为奇偶校验盘,每次写操作都需要访问奇偶盘,这时奇偶校验盘会成为写操作的瓶颈,因此RAID4在商业环境中也很少使用。RAID5:RAID5不单独指定的奇偶盘,而是在所有磁盘上交叉地存取数据及奇偶校验信息。在RAID5上,读/写指针可同时对阵列设备进行操作,提供了更高的数据流量。RAID5更适合于小数据块和随机读写的数据。RAID3与RAID5相比,最主要的区别在于RAID3每进行一次数据传输就需涉及到所有的阵列盘;而对于RAID5来说,大部分数据传输只对一块磁盘操作,并可进行并行操作。在RAID5中有“写损失”,即每一次写操作将产生四个实际的读/写操作,其中两次读旧的数据及奇偶信息,两次写新的数据及奇偶信息。RAID6:与RAID5相比,RAID6增加了第二个独立的奇偶校验信息块。两个独立的奇偶系统使用不同的算法,数据的可靠性非常高,即使两块磁盘同时失效也不会影响数据的使用。但RAID6需要分配给奇偶校验信息更大的磁盘空间,相对于RAID5有更大的“写损失”,因此“写性能”非常差。较差的性能和复杂的实施方式使得RAID6很少得到实际应用。RAID7:这是一种新的RAID标准,其自身带有智能化实时操作系统和用于存储管理的软件工具,可完全独立于主机运行,不占用主机CPU资源。RAID7可以看作是一种存储计算机(StorageComputer),它与其他RAID标准有明显区别。除了以上的各种标准(如表1),我们可以如RAID0+1那样结合多种RAID规范来构筑所需的RAID阵列,例如RAID5+3(RAID53)就是一种应用较为广泛的阵列形式。用户一般可以通过灵活配置磁盘阵列来获得更加符合其要求的磁盘存储系统。开始时RAID方案主要针对SCSI硬盘系统,系统成本比较昂贵。1993年,HighPoint公司推出了第一款IDE-RAID控制芯片,能够利用相对廉价的IDE硬盘来组建RAID系统,从而大大降低了RAID的“门槛”。从此,个人用户也开始关注这项技术,因为硬盘是现代个人计算机中发展最为“缓慢”和最缺少安全性的设备,而用户存储在其中的数据却常常远超计算机的本身价格。在花费相对较少的情况下,RAID技术可以使个人用户也享受到成倍的磁盘速度提升和更高的数据安全性,现在个人电脑市场上的IDE-RAID控制芯片主要出自HighPoint和Promise公司,此外还有一部分来自AMI公司(如表2)。面向个人用户的IDE-RAID芯片一般只提供了RAID0、RAID1和RAID0+1(RAID10)等RAID规范的支持,虽然它们在技术上无法与商用系统相提并论,但是对普通用户来说其提供的速度提升和安全保证已经足够了。随着硬盘接口传输率的不断提高,IDE-RAID芯片也不断地更新换代,芯片市场上的主流芯片已经全部支持ATA100标准,而HighPoint公司新推出的HPT372芯片和Promise最新的PDC20276芯片,甚至已经可以支持ATA133标准的IDE硬盘。在主板厂商竞争加剧、个人电脑用户要求逐渐提高的今天,在主板上板载RAID芯片的厂商已经不在少数,用户完全可以不用购置RAID卡,直接组建自己的磁盘阵列,感受磁盘狂飙的速度二.通过硬件控制芯片实现IDERAID的方法在RAID家族里,RAID0和RAID1在个人电脑上应用最广泛,毕竟愿意使用4块甚至更多的硬盘来构筑RAID0+1或其他硬盘阵列的个人用户少之又少,因此我们在这里仅就这两种RAID方式进行讲解。我们选择支持IDE-RAID功能的升技KT7A-RAID主板,一步一步向大家介绍IDE-RAID的安装。升技KT7A-RAID集成的是HighPoint370芯片,支持RAID0、1、0+1。做RAID自然少不了硬盘,RAID0和RAID1对磁盘的要求不一样,RAID1(Mirror)磁盘镜像一般要求两块(或多块)硬盘容量一致,而RAID0(Striping)磁盘一般没有这个要求,当然,选用容量相似性能相近甚至完全一样的硬盘比较理想。为了方便测试,我们选用两块60GB的希捷酷鱼Ⅳ硬盘(BarracudaATAⅣ、编号ST360021A)。系统选用Duron750MHz的CPU,2×128MB樵风金条SDRAM,耕升GeForce2Pro显卡,应该说是比较普通的配置,我们也希望借此了解构建RAID所需的系统要求。1.RAID0的创建第一步首先要备份好硬盘中的数据。很多用户都没有重视备份这一工作,特别是一些比较粗心的个人用户。创建RAID对数据而言是一项比较危险的操作,稍不留神就有可能毁掉整块硬盘的数据,我们首先介绍的RAID0更是这种情况,在创建RAID0时,所有阵列中磁盘上的数据都将被抹去,包括硬盘分区表在内。因此要先准备好一张带Fdisk与Format命令的Windows98启动盘,这也是这一步要注意的重要事项。第二步将两块硬盘的跳线设置为Master,分别接上升技KT7A-RAID的IDE3、IDE4口(它们由主板上的HighPoint370芯片控制)。由于RAID0会重建两块硬盘的分区表,我们就无需考虑硬盘连接的顺序(下文中我们会看到在创建RAID1时这个顺序很重要)。第三步对BIOS进行设置,打开ATARAIDCONTROLLER。我们在升技KT7A-RAID主板的BIOS中进入INTEGRATEDPERIPHERALS选项并开启ATA100RAIDIDECONTROLLER。升技建议将开机顺序全部改为ATA100RAID,实际我们发现这在系统安装过程中并不可行,难道没有分区的硬盘可以启动吗?因此我们仍然设置软驱作为首选项。第四步接下来的设置步骤是创建RAID0的核心内容,我们以图解方式向大家详细介绍:1.系统BIOS设置完成以后重启电脑,开机检测时将不会再报告发现硬盘。2.磁盘的管理将由HighPoint370芯片接管。3.下面是非常关键的HighPoint370BIOS设置,在HighPoint370磁盘扫描界面同时按下“Ctrl”和“H”。4.进入HighPoint370BIOS设置界面后第一个要做的工作就是选择“CreateRAID”创建RAID。5.在“ArrayMode(阵列模式)”中进行RAID模式选择,这里能够看到RAID0、RAID1、RAID0+1和Span的选项,在此我们选择了RAID0项。6.RAID模式选择完成会自动退出到上一级菜单进行“DiskDrives(磁盘驱动器)”选择,一般来说直接回车就行了。7.下一项设置是条带单位大小,缺省值为64kB,没有特殊要求可以不予理睬。8.接着是“StartCreate(开始创建)”的选项,在你按下“Y”之前,请认真想想是否还有重要的数据留在硬盘上,这是你最后的机会!一旦开始创建RAID,硬盘上的所有数据都会被清除。9.创建完成以后是指定BOOT启动盘,任选一个吧。按“Esc”键退出,当然少不了按下“Y”来确认一下。HighPoint370BIOS没有提供类似“ExitWithoutSave”的功能,修改设置后是不可逆转的第五步再次重启电脑以后,我们就可以在屏幕上看到“Striping(RAID0)forArray#0”字样了。插入先前制作的启动盘,启动DOS。打开Fdisk程序,咦?怎么就一个硬盘可见?是的,RAID阵列已经整个被看作了一块硬盘,对于操作系统而言,RAID完全透明,我们大可不必费心RAID磁盘的管理,这些都由控制芯片完成。接下来按照普通单硬盘方法进行分区,你会发现“这个”硬盘的容量“变”大了,仔细算算,对,总容量就是两块硬盘相加的容量!我们可以把RAID0的读写比喻成拉链,它把数据分开在两个硬盘上,读取数据会变得更快,而且不会浪费磁盘空间。在分区和格式化后千万别忘了激活主分区。第六步选择操作系统让我们颇费周折,HighPoint370芯片提供对Windows98/NT/2000/XP的驱动支持,考虑到使RAID功能面向的是相对高级的用户,所以我们选择了对新硬件支持更好的WindowsXPProfessional英文版(采用英文版系统主要是为了方便后面的Winbench测试,大家自己使用RAID完全可以用中文版的操作系统),Windows2000也是一个不错的选择,但是硬件支持方面显然不如WindowsXPProfessional。第七步对于采用RAID的电脑,操作系统的安装和普通情况下不一样,让我们看看图示,这是在WindowsXP完成第一步“文件复制”重启以后出现的画面,安装程序会以英文提示“按下F6安装SCSI设备或RAID磁盘”,这一过程很短,而且用户往往会忽视屏幕下方的提示。按下F6后出现安装选择,选择“S”将安装RAID控制芯片驱动,选择“Enter”则不安装。按下“S”键会提示插入RAID芯片驱动盘。键入回车,安装程序自动搜索驱动盘上的程序,

1 / 6
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功