拉格朗日中值定理是微分学中最重要的定罗尔定理来证明。理之一,它是沟通函数与其导数之间的桥梁,也是微分学的理论基础。一般高等数学教材上,大都是用罗尔定理证明拉朗日中值定理,直接给出一个辅助函数,把拉格朗日定理的证明归结为用罗尔定理,证明的关键是给出—个辅助函数。怎样构作这一辅助函数呢?给出两种构造辅助函数的去。罗尔定理:函数满足在[a,b止连续,在(a,b)内可导,且f(a)=f(b),则在(a,b)内至少存在一点∈,使f(∈)==o(如图1)。拉格朗日定理:若f(x)满足在『a,b』上连续,在(a,b)内可导,则在(a,b)内至少存在_∈,使(如图2).比较定理条件,罗尔定理中端点函数值相等,f,而拉格朗日定理对两端点函数值不作限制,即不一定相等。我们要作的辅助函数,除其他条件外,一定要使端点函数值相等,才能归结为:1.首先分析要证明的等式:我们令……(1)则只要能够证明在(a,b)内至少存在一点∈,使f(∈t就可以了。由有,f(b)-tb=f(a)-ta……(2)分析(2)式,可以看出它的两边分别是F(X)=f(x)-tx在b,a观点的值。从而,可设辅助函数F(x)=f(x)-tx。该函数F(x)满足在{a.b{上连续,在(a,b)内可导,且F(a)=F(b)。根据罗尔定理,则在(a,b)内至少存在一点∈,使F。(∈)=O。也就是f(∈)-t=O,也即f(∈)=t,代人(1)得结论2.考虑函数我们知道其导数为且有F(a)=F(b)=0.作辅助函数,该函数F(x)满足在[a,b]是连续,在(a,b)内可导,且fF。根据罗尔定理,则在(a,b)内至少存在一点∈,使F’从而有结论成立.