北京理综高考物理前两个计算题汇编(有答案)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

hxRFab30°B012340.40.8I/At/s甲乙MNPQ09-11各年模拟试题计算题前两个汇编1(16分)在竖直平面内有一个粗糙的14圆弧轨道,其半径R=0.40m,轨道的最低点距地面高度h=0.80m。一质量m=0.10kg的小滑块从轨道的最高点由静止释放,到达最低点时以一定的水平速度离开轨道,落地点距轨道最低点的水平距离x=0.80m。空气阻力不计,g取10m/s2,求:⑴小滑块离开轨道时的速度大小;⑵小滑块运动到轨道最低点时,对轨道的压力大小;⑶小滑块在轨道上运动的过程中,克服摩擦力所做的功。2(20分)如图甲所示,足够长的光滑平行金属导轨MN、PQ所在平面与水平面成30º角,两导轨的间距l=0.50m,一端接有阻值R=1.0Ω的电阻。质量m=0.10kg的金属棒ab置于导轨上,与轨道垂直,电阻r=0.25Ω。整个装置处于磁感应强度B=1.0T的匀强磁场中,磁场方向垂直于导轨平面向下。t=0时刻,对金属棒施加一平行于导轨向上的外力F,使之由静止开始运动,运动过程中电路中的电流随时间t变化的关系如图乙所示。电路中其他部分电阻忽略不计,g取10m/s2,求:⑴4.0s末金属棒ab瞬时速度的大小;⑵3.0s末力F的瞬时功率;⑶已知0~4.0s时间内电阻R上产生的热量为0.64J,试计算F对金属棒所做的功。3.(16分)如图所示,某人乘雪橇从雪坡A点滑至B点,接着沿水平地面滑至C点停止。人与雪橇的总质量为70kg,A点距地面的高度为20m,人与雪橇在BC段所受阻力恒定。图表中记录了人与雪橇运动过程中的有关数据。求:(取g=10m/s2)(1)人与雪橇从A到B的过程中,损失的机械能;(2)人与雪橇在BC段所受阻力的大小;(3)BC的距离。位置ABC速度(m/s)2.012.00时刻(s)04.010.04(18分)如图所示,真空中有以(r,0)为圆心,半径为r的圆形匀强磁场区域,磁场的磁感应强度大小为B,方向垂直于纸面向里,在y=r的虚线上方足够大的范围内,有方向水平向左的匀强电场,电场强度的大小为E,从O点向不同方向发射速率相同的质子,质子的运动轨迹均在纸面内,且质子在磁场中的偏转半径也为r,已知质子的电荷量为q,质量为m,不计重力、粒子间的相互作用力及阻力的作用。求:(1)质子射入磁场时速度的大小;(2)沿x轴正方向射入磁场的质子,到达y轴所需的时间;(3)与x轴正方向成30o角(如图中所示)射入的质子,到达y轴的位置坐标。5.(16分)如图9所示,水平桌面距地面高h=0.80m,桌面上放置两个小物块A、B,物块B置于桌面右边缘,物块A与物块B相距s=2.0m,两物块质量mA、mB均为0.10kg。现使物块A以速度v0=5.0m/s向物块B运动,并与物块B发生正碰,碰撞时间极短,碰后物块B水平飞出,落到水平地面的位置与桌面右边缘的水平距离x=0.80m。已知物块A与桌面间的动摩擦因数=0.40,重力加速度g取10m/s2,物块A和B均可视为质点,不计空气阻力。求:⑴两物块碰撞前瞬间物块A速度的大小;⑵两物块碰撞后物块B水平飞出的速度大小;⑶物块A与物块B碰撞过程中,A、B所组成的系统损失的机械能。6.(18分)如图10所示,两根平行长直金属导轨倾斜放置,导轨平面与水平面的夹角为,导轨的间距为L,两导轨上端之间接有阻值为R的电阻。质量为m的导体棒ab垂直跨接在导轨上,接触良好,导体棒与导轨间的动摩擦因数为μ,导轨和导体棒的电阻均不计。在导轨平面上的矩形区(如图中虚线框所示)域内存在着匀强磁场,磁场方向垂直导轨平面向上,磁感应强度的大小为B。当磁场以某一速度沿导轨平面匀速向上运动时,导体棒以速度v0随之匀速向上运动。设导体棒在运动过程中始终处于磁场区域内。求:⑴通过导体棒ab的电流大小和方向;⑵磁场运动的速度大小;⑶维持导体棒匀速向上运动,外界在时间t内需提供的能量是多少?xyO30oEABxhsv0图9RBab图107.(16分)如图,一个质子和一个α粒子从容器A下方的小孔S,无初速地飘入电势差为U的加速电场。然后垂直进入磁感应强度为B的匀强磁场中,磁场方向垂直纸面向外,MN为磁场的边界。已知质子的电荷量为e,质量为m,α粒子的电荷量为2e,质量为4m。求:(1)质子进入磁场时的速率v;(2)质子在磁场中运动的时间t;(3)质子和α粒子在磁场中运动的轨道半径之比rH∶rα。8.(18分)如图,光滑圆弧轨道与水平轨道平滑相连。在水平轨道上有一轻质弹簧,右端固定在墙M上,左端连接一个质量为2m的滑块C。开始C静止在P点,弹簧正好为原长。在水平轨道上方O处,用长为L的细线悬挂一质量为m的小球B,B球恰好与水平轨道相切于D点,并可绕O点在竖直平面内运动。将质量为m的滑块A从距水平轨道3L高处由静止释放,之后与静止在D点的小球B发生碰撞,碰撞前后速度发生交换。经一段时间A与C相碰,碰撞时间极短,碰后粘在一起压缩弹簧,弹簧最大压缩量为L31。P点左方的轨道光滑、右方粗糙,滑块A、C与PM段的动摩擦因数均为μ,A、B、C均可视为质点,重力加速度为g。求:(1)滑块A与球B碰撞前瞬间的速度大小v0;(2)小球B运动到最高点时细线的拉力大小T;(3)弹簧的最大弹性势能EP。9(16分)一艘帆船在湖面上顺风行驶,在风力的推动下做速度v1=4m/s的匀速直线运动,已知:该帆船在匀速行驶的状态下突然降下风帆失去动力,帆船在湖面上做匀减速直线运动,经过8秒钟才能恰好静止;该帆船的帆面正对风的有效面积为S=10m2,帆船的总质量M约为940kg,当时的风速v2=10m/s。若假设帆船在行驶的过程中受到的阻力始终恒定不变,那么由此估算:(1)在匀速行驶的状态下,帆船受到的动力和阻力分别为多大?(2)空气的密度约为多少?BUASMN3L10(18分)如图所示,在固定的水平绝缘平板上有A、B、C三点,B点左侧的空间存在着场强大小为E,方向水平向右的匀强电场,在A点放置一个质量为m,带正电的小物块,物块与平板之间的摩擦系数为μ,若物块获得一个水平向左的初速度v0之后,该物块能够到达C点并立即折回,最后又回到A点静止下来。求:(1)此过程中电场力对物块所做的总功有多大?(2)此过程中物块所走的总路程s有多大?(3)若进一步知道物块所带的电量是q,那么B、C两点之间的距离是多大?11.如图11所示,水平绝缘粗糙的轨道AB与处于竖直平面内的半圆形绝缘光滑轨道BC平滑连接,半圆形轨道的半径R=0.40m。在轨道所在空间存在水平向右的匀强电场,电场线与轨道所在的平面平行,电场强度E=1.0×104N/C。现有一电荷量q=+1.0×10-4C,质量m=0.10kg的带电体(可视为质点),在水平轨道上的P点释放由静止释放,带电体恰好能通过半圆形轨道的最高点C,然后落至水平轨道上的D点。取g=10m/s2。求:(1)带电体在圆形轨道C点的速度大小;(2)带电体运动到圆形轨道B点时对圆形轨道的压力大小;(3)带电体在从A开始运动到落至D点的过程中的最大动能。12.光子具有能量,也具有动量。光照射到物体表面时,会对物体产生压强,这就是“光压”。光压的产生机理如同气体压强:大量气体分子与器壁的频繁碰撞产生了持续均匀的压力,器壁在单位面积上受到的压力就是气体的压强。设太阳光每个光子的平均能量为E,太阳光垂直照射地球表面时,在单位面积上的辐射功率为P0。已知光速为c,则光子的动量为E/c。求:(1)若太阳光垂直照射在地球表面,试计算时间t内照射到地球表面上半径为r的圆形区域内光子的总动量。(2)一般情况下,太阳光照射到物体表面时,一部分会被反射,还有一部分被吸收。当物体表面的反射系数为ρ时,则在每秒内照射到物体表面的全部n个光子中,有(1-ρ)n个被吸收而ρn个被反射。若太阳光垂直照射在地球表面反射系数为ρ、半径为r的某圆形区域内,则在时间t内照射到此区域的光子的总动量的变化量是多少?(3)在第(2)问中太阳光在圆形区域表面产生的光压(用I表示光压)是多少?ABDEROCP图11LMNECB13.(12分)如图所示,固定在水平面上的斜面倾角θ=37°,长方体木块A的MN面上钉着一颗小钉子,质量m=1.5kg的小球B通过一细线与小钉子相连接,细线与斜面垂直,木块与斜面间的动摩擦因数μ=0.50.现将木块由静止释放,木块将沿斜面下滑.求在木块下滑的过程中小球对木块MN面的压力.(取g=10m/s2,sin37°=0.6,cos37°=0.8)14.(18分)如图所示,MN是一固定在水平地面上足够长的绝缘平板(右侧有挡板),整个空间有平行于平板向左、场强为E的匀强电场,在板上C点的右侧有一个垂直于纸面向里、磁感应强度为B的匀强磁场,一个质量为m、带电量为-q的小物块,从C点由静止开始向右先做加速运动再做匀速运动.当物体碰到右端挡板后被弹回,若在碰撞瞬间撤去电场,小物块返回时在磁场中恰做匀速运动,已知平板NC部分的长度为L,物块与平板间的动摩擦因数为μ,求:(1)小物块向右运动过程中克服摩擦力做的功;(2)小物块与右端挡板碰撞过程损失的机械能;(3)最终小物块停在绝缘平板上的位置.15(16分)两个板长均为三的平板电极,平行正对放置,相距为d,极板之间的电势差为U,板问电场可以认为是均匀的。一个α粒子从正极板边缘以某一初速度垂直于电场方向射人两极板之间,到达负极板时恰好落在极板边缘。已知质子电荷为e,质子和中子的质量均视为m,忽略重力和空气阻力的影响,求:(1)极板间的电场强度E;(2)α粒子的初速度v0。16.(18分)洛伦兹力演示仪是由励磁线圈(也叫亥姆霍兹线圈)、洛伦兹力管和电源控制部分组成的。励磁线圈是一对彼此平行的共轴串联的圆形线圈,它能够在两线圈之间产生匀强磁场。洛伦兹力管的圆球形玻璃泡内有电子枪,能够连续发射出电子,电子在玻璃泡内运动时,能够显示电子运动径迹。其结构如图所示。(1)给励磁线圈通电,电子枪垂直磁场方向向左发射电子,恰好形成如“结构示意图”所示的圆形径迹,则励磁线圈中电流方向是顺时针方向还是逆时针方向?2)两个励磁线圈中每一线圈为N=140匝,半径为R=140mm,两线圈内的电流方向一致,大小相同为I=1.00A,线圈之间距离正好等于圆形线圈的半径,在玻璃泡的区域内产生的磁场为匀强磁场,其磁场强度7910NIBR(特斯拉)。灯丝发出的电子束经过加速电压为U=125V的电场加速后,垂直磁场方向进入匀强磁场区域,通过标尺测得圆形径迹的直径为D=80.0mm,请估算电子的比荷em。(答案保留2位有效数字)(3)为了使电子流的圆形径迹的半径增大,可以采取哪些办法?17.(16分)均匀导线制成的电阻为R、质量为m的单匝矩形闭合线框abcd,边长ab=h,ad=L,将线框置于一有界匀强磁场上方某一高度处,如图14所示。已知该磁场区域宽度为h,磁场方向沿水平、垂直线框所在平面向里,磁感应强度为B。现使线框由静止自由下落,线框平面保持与磁场方向垂直,且bc边始终保持水平。若线框恰好以恒定速度通过磁场,重力加速度为g,空气阻力可忽略不计,求:1)线框通过磁场过程中产生的焦耳热;2)线框开始下落时bc边与磁场上边界的距离;3)bc边在磁场区域运动过程中,a、d两点间的电势差。图14Bhabcd18(18分)如图15所示装置可用来分析气体原子的组成。首先使待研究气体进入电离室A,在此气体被电离成等离子体(待研究气体的等离子体由含有一价正离子和电荷量为e的电子组成,整体显电中性)。这些等离子体(统称“带电粒子”)从电离室下端狭缝S1飘出(忽略飘出的速度),经两极板间电压为U的加速电场后(忽略这些带电粒子被加速的时间),从狭缝S2沿垂直磁场方向进入磁感应强度为B的有界匀强磁场,在磁场的上、下边界处分别装有水平底片E和F。当双刀双掷开关分别掷向1、2和3、4时,发现从电离室狭缝S1飘出的带电粒子分别打在E和F上的P、Q点。已知狭缝S2与水平底片E上P点之间的距离d1=2.0cm,到水平底片F上Q点的水平距离d2=6.4cm,磁场区域宽度d=30cm。空气阻力

1 / 24
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功