§4.2线性方程组解的讨论一、线性方程组解的判定二、非齐次与齐次线性方程组解的关系三、线性方程组解的性质AAAxb:利用系数矩阵和增广矩阵的秩,讨论解线性方程组决的解.问题:mnnAxb´=元线性方程组0mnnAx´=元齐次线性方程组什么时候线性方程组有解?什么时候无解?有解的时候什么时候是唯一解?什么时候是无穷解?证,有解设方程组bAx()()mnAxbrArA有解定理´=?11121121222212nnmmmnmaaabaaabaaab®行变111,1212,21,110001000100000000000000000nrnrrrnrrrbbdbbdbbdd121rrnxxxxx+LL1()(),0mnrAxbrArAd有解也就显然是+´=?==行最简形证()()mnAxbrArA有解定理´=?11121121222212nnmmmnmaaabaaabaaab®行变111,1212,21,110001000100000000000000000nrnrrrnrrrbbdbbdbbdd121rrnxxxxx+LL()(),()(),rArAnrArAn若=有唯一解若有无穷多的解==12100000100000001000000000000000000nddd1122nnxdxdxd自变量的个数证()()mnAxbrArA有解定理´=?11121121222212nnmmmnmaaabaaabaaab®行变111,1212,21,100010001000000000000000000nrnrrrnrrbbdbbdbbd121rrnxxxxx+LL()(),()(),rArAnrArArn若=有唯一解若=有无穷多的解==11111221,122112222,2121122,(,rrnrnrrnrnrrnrrrrrrnrnrxbxbxbxdxbxbxbxdxxxxbxbxbxd为自由变量)11111221,122112222,2121122,(,nrnrnrnrnrrrrrnrnrrxbcbcbcdxbcbcbcdcccxbcbcbcd为任意常数)(1)线性方程组有解的判定定理mnnAxb´=元线性方程组0mnnAx´=元齐次线性方程组()(),()(),()()()(,)()rArAnrArArArnrArAA若=有唯一解若有无穷多的解若无解ìï=ïïï=íïïï¹ïî1.0Ax=恒有解(零解)111,212,1,100001000010000000000000000000nrnrrrnrbbbbbb111212122212000nnmmmnaaaaaaaaa®行变02.Ax,当r(A)=n,只有唯一解()只有零解=当r(A)n,有无穷存在多个解(非零解)03.mnAxmn´=,当时,必有非零解r(A)min(m,n)n证:=m£Q(2)齐次线性方程组解的判定条件mnnAxb´=元线性方程组0mnnAx´=元齐次线性方程组()()rAnrAn只有零解无穷多个解(有非零解)ì=ïïíïïî齐次线性方程组:系数矩阵化成行最简形矩阵,便可写出其通解;非齐次线性方程组:增广矩阵化成行阶梯形矩阵,便可判断其是否有解.若有解,化成行最简形矩阵,便可写出其通解;用初等行变换解线性方程组的步骤:有无穷多解.bAx非齐次线性方程组bAx齐次线性方程组0AxrAn;0只有零解AxrAn.0有非零解Ax(3)初等行变换法求方程组解的理论小结;有唯一解bAx无解.bAx()()rArAn==()()rArAn=()()rArA¹例1求解齐次线性方程组1234123412342202220430.xxxxxxxxxxxx解341122121221A463046301221二、线性方程组的解法施行初等行变换:对系数矩阵A13122rrrr000034210122100003421035201即得与原方程组同解的方程组,0342,0352432431xxxxxx)3(223rrr212rr112212314252,342,3,xccxccxcxcìïï=+ïïïïïï=--íïïï=ïïïï=ïî).,(43可任意取值xx由此即得,342,352432431xxxxxx形式,把它写成通常的参数令2413,cxcx12(,).cc为任意常数例2求解非齐次线性方程组.3222,2353,132432143214321xxxxxxxxxxxx解对增广矩阵进行初等变换,123113153221223A131322rrrr10450104501132123rr200001045011321()2,()3,rArA显然,故方程组无解.例3求解非齐次方程组的通解.2132130432143214321xxxxxxxxxxxx解对增广矩阵进行初等变换1111011131112312A1111000241001212110112001212.000002,rArA由于故方程组有解,且有2122143421xxxxx2142112,21324212212xcxcxccxcxcxc令==ì=++ïïïï=ïÛíï=+ïïï=ïî例4求出它的一切解.在有解的情况下,是有解的充要条件证明方程组.054321515454343232121aaaaaaxxaxxaxxaxxaxx证对增广矩阵进行初等行变换,方程组的增广矩阵为543211000111000011000011000011aaaaaB1234151100001100001100001101000aaaaaa+骣-÷ç÷ç÷ç÷-ç÷ç÷ç÷ç÷?÷ç÷ç÷ç÷-ç÷ç÷ç÷÷ç-桫12341521100001100001100001100100aaaaaaa+骣-÷ç÷ç÷ç÷-ç÷ç÷ç÷ç÷?÷ç÷ç÷ç÷-ç÷ç÷ç÷÷ç-+桫1234151100001100001100001101000aaaaaa+骣-÷ç÷ç÷ç÷-ç÷ç÷ç÷ç÷?÷ç÷ç÷ç÷-ç÷ç÷ç÷÷ç-桫1234511100001100001100001100000iiaaaaa()()510iirArAa方程组有解的充要条件是此方程组有解==\?å有解的情况下求出方程组的解123411000011000011000011000000aaAaa骣-÷ç÷ç÷ç÷-ç÷ç÷ç÷ç÷®-÷ç÷ç÷ç÷-ç÷ç÷ç÷÷ç桫1234411000011000010001100000010aaaaa-+骣-÷ç÷ç÷ç÷-ç÷ç÷ç÷ç÷®÷ç÷ç÷ç÷-ç÷ç÷ç÷÷ç桫134423411000010010100011000001000aaaaaaa-+-++骣-÷ç÷ç÷ç÷ç÷ç÷ç÷ç÷®÷ç÷ç÷ç÷-ç÷ç÷ç÷÷ç桫122343443410100100101000000111000000aaaaaaaaaa-++-+-+++骣÷ç÷ç÷ç÷ç÷ç÷ç÷ç÷®÷ç÷ç÷ç÷-ç÷ç÷ç÷÷ç桫由此得通解:544543354322543211xaxxaaxxaaaxxaaaax.5为任意实数x123423434410001010010010100011000000aaaaaaaaaa-+++-++-+骣÷ç÷ç÷ç÷ç÷ç÷ç÷ç÷®÷ç÷ç÷ç÷-ç÷ç÷ç÷÷ç桫112342234334445(xaaaacxaaacxaaccxacxc其中为任意常数).0323,0,022,04321432143214321xaxxxxxaxxxxxxxxxx例5当取何值时,下述齐次线性方程组有非零解,并且求出它的通解.a解法一系数矩阵的行列式为AaaA323111212111113050212010101111aa2000010010101111aa)2)(1(aa.,0,21方程组有非零解时或者当Aaa:,1化成最简形把系数矩阵时当Aa111111111010121201010100111100030001323100000000骣骣骣---鼢?珑?鼢?珑?鼢?珑?鼢?-珑?鼢?珑?鼢?珑?鼢?珑?鼢?----鼢?珑?鼢?珑?鼢?珑?鼢?珑?--桫桫桫12340,.0cccxxxx为任意常数ì=ïïïï=ïïíï=ïïï=ïïî从而得到方程组的通解2000010010101111aa2,11111111121201011121003032320000aAA当时由计算之变换可把化为10000101001000002000010010101111aa12340,.0cccxxxx从而得到方程组的通解为为任意常数ì=ïïïï=-ïïíï=ïïï=ïïîaaA323111212111111111010102120503aa解法二用初等行变换把系数矩阵化为阶梯形A12,()4,,.aarA当或者时此时方程组有非零解可仿照解法一求出它的解1111010100100002aa12aa??当且时,方程组无非零解例6:1231211232,3,120(1)0(2)xAabxxaxAxaAxba设齐次线性方程组只有零解,求非齐次线性方程组无解,求解:12123212aa骣÷ç÷ç÷ç÷+ç÷ç÷ç÷÷çç÷-桫12101023aa骣÷ç÷ç÷ç÷?ç÷ç÷ç÷÷çç÷--桫2121010023aaa骣÷ç÷ç÷ç÷?ç÷ç÷ç÷÷çç÷--桫a≠-1且a≠3(1)(2)12112323120aa骣÷ç÷ç÷ç÷+ç÷ç÷ç÷÷çç÷-桫12110110231aa骣÷ç÷ç÷ç÷?ç÷ç÷ç÷÷çç÷---桫2121101100233aaaa骣÷ç÷ç÷ç÷?ç÷ç÷ç÷÷çç÷---桫223030aaa--=-?且1a?-例6:1231211232,3,120(1)0(2)xAabxxaxAxaAxba设齐次线性方程组只有零解,求非齐