PROBABILISTIC LOGIC PROGRAMMING UNDER INHERITANCE

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

INFSYSRESEARCHREPORTInstitutf¨urInformationssystemeAbtg.WissensbasierteSystemeTechnischeUniversit¨atWienFavoritenstraße9-11A-1040Wien,AustriaTel:+43-1-58801-18405Fax:+43-1-58801-18493sek@kr.tuwien.ac.at¨URINFORMATIONSSYSTEMEABTEILUNGWISSENSBASIERTESYSTEMEPROBABILISTICLOGICPROGRAMMINGUNDERINHERITANCEWITHOVERRIDINGThomasLukasiewiczINFSYSRESEARCHREPORT1843-01-05MAY2001INFSYSRESEARCHREPORTINFSYSRESEARCHREPORT1843-01-05,MAY2001PROBABILISTICLOGICPROGRAMMINGUNDERINHERITANCEWITHOVERRIDING(PRELIMINARYREPORT,MAY2001)ThomasLukasiewicz1Abstract.Wepresentprobabilisticlogicprogrammingunderinheritancewithoverriding.Thisapproachisbasedonnewnotionsofentailmentforreasoningwithconditionalcon-straints,whichareobtainedfromtheclassicalnotionoflogicalentailmentbyaddingin-heritancewithoverriding.Thisisdonebyusingrecentapproachestoprobabilisticdefaultreasoningwithconditionalconstraints.Weanalyzethesemanticpropertiesofthenewen-tailmentrelations.Wealsopresentalgorithmsforprobabilisticlogicprogrammingunderinheritancewithoverriding,andweanalyzeitscomplexityinthepropositionalcase.1InstitutundLudwigWittgensteinLaborf¨urInformationssysteme,TUWien,Favoritenstraße9-11,A-1040Vienna,Austria.E-mail:lukasiewicz@kr.tuwien.ac.at.Acknowledgements:IamverygratefultoGabrieleKern-Isbernerforvaluablecommentsonanearlierversionofthispaper.ThisworkhasbeensupportedbyaDFGgrantandtheAustrianScienceFundunderprojectNZ29-INF.Copyrightc2001bytheauthors2INFSYSRR1843-01-051IntroductionAnumberofrecentresearcheffortsaredirectedtowardsintegratinglogic-orientedandprobability-basedrepresentationandreasoningformalisms.Inparticular,thereareapproachestoprobabilisticlogicprogrammingthatcombinelogicprogrammingtechniqueswithprobabilitiesoverpossibleworlds[25,26,4,5,20].Theyarebasedonthemodel-theoreticnotionoflogicalentailment,whichiswell-knownfromprobabilisticpropositionallogics[28,7,6].Thenotionoflogicalentailment,however,hasoftenbeencriticizedintheliteratureforitsinferentialweakness.Forthisreason,manyrecentapproachestowardsintegratinglogicandprob-abilitiescombinelogic-basedformalismswithBayesiannetworks[33,32,13,27,15].Anotherwaytoovercometheinferentialweaknessoflogicalentailmentistousetheprinci-pleofmaximumentropy[24]ortheprincipleofsequentialmaximumentropy[21],wherethelatteriscloselyrelatedtoBayesiannetworks.Themaximumentropyapproach,however,hasthedrawbackthatitdoesnotproperlymodelimprecisioninourknowledgebase.Thatis,maximumentropyalwaysproducesasinglejointdistribution,forexample,alsointheextremecasewhenourknowledgebaseisempty.Inthispaper,weinvestigateaverypromisingnewapproachofstrengtheningthenotionoflogicalentailmentinprobabilisticlogic,whichdoesnothavetheabove-mentioneddrawbackofthemaximumentropyapproach.Thisapproachalsohasadvantagesovertheabovecombinationsoflogic-basedformalismswithBayesiannetworks,asitdoesnotassumeacyclicBayesiannetworkstructureswithcompleteandpreciseconditionalprobabilities.Thisnewapproachisinspiredbyreference-classreasoning,whichgoesbacktoReichenbach[34]andwasfurtherrefinedespeciallybyKyburg[17,18]andPollock[31].Reichenbach[34]describesreference-classreasoningasfollows:“Ifweareaskedtofindtheprobabilityholdingforanindividualfutureevent,wemustfirstincorporatethecaseinasuitablereferenceclass.Anindividualthingoreventmaybeincorporatedinmanyreferenceclasses.Wethenproceedbyconsideringthenarrowestreferenceclassforwhichsuitablestatisticscanbecompiled.”Thatis,Reichenbachsuggeststoequateourknowledgeaboutaparticularindividualwiththestatisticsfromareferenceclass,whichisinformallydefinedasasetofindividualstowhichourparticularindividualbelongsandaboutwhichwehave“suitablestatistics”.Moreover,ifthereareseveralreferenceclasseswithconflictingstatistics,thenweshouldpreferthesmallestoneanditsassociatedstatistics.Interestingly,Reichenbach’sguidelinesmaybeinterpretedasinheritancewithoverridingasitisknownfromobject-orientedprogramminglanguages.Theaspectofinheritanceisexpressedbythefactthatanyclasscontainingtheparticularindividualcanbeconsideredasreferenceclass,whiletheaspectofoverridingisexpressedbythefactthatsmallerreferenceclassesarepreferredtolargerones.Itturnsoutthattheclassicalnotionoflogicalentailmentinprobabilisticlogicdoesnotfollowtheprincipleofinheritancewithoverriding.Itisthusanaturalideatostrengthenlogicalentailmentbyaddinginheritancewithoverriding.Inthispaper,werealizethisideabyusingrecentapproachestoprobabilisticdefaultreasoningfrom[22,23].INFSYSRR1843-01-053Themaincontributionsofthispapercanbesummarizedasfollows:Wepresentprobabilisticlogicprogrammingunderinheritancewithoverriding,whichisbasedonrecentapproachestoprobabilisticdefaultreasoningfrom[22,23].Wedescribegeneralnonmontonicpropertiesofentailmentunderinheritancewithoverriding.Wepresentalgorithmsforprobabilisticlogicprogrammingunderinheritancewithoverriding.Weanalyzethecomputationalcomplexityofprobabilisticlogicprogrammingunderinheri-tancewithoverridinginthepropositionalcase.Notethatallproofsaregivenintheappendix.2PreliminariesInthissection,wedescribetheprobabilisticback

1 / 20
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功