2012年北京中考数学试卷及答案解析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2012年北京市高级中等学校招生考试数学试卷(答案)学校姓名准考证号一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.9的相反数是A.19B.19C.9D.92.首届中国(北京)国际服务贸易交易会(京交会)于2012年6月1日闭幕,本届京交会期间签订的项目成交总金额达60110000000美元,将60110000000用科学记数法表示应为A.96.01110B.960.1110C.106.01110D.110.6011103.正十边形的每个外角等于A.18B.36C.45D.604.右图是某个几何体的三视图,该几何体是A.长方体B.正方体C.圆柱D.三棱柱5.班主任王老师将6份奖品分别放在6个完全相同的不透明礼盒中,准备将它们奖给小英等6位获“爱集体标兵”称号的同学.这些奖品中3份是学习文具,2份是科普读物,1份是科技馆通票.小英同学从中随机取一份奖品,恰好取到科普读物的概率是A.16B.13C.12D.236.如图,直线AB,CD交于点O,射线OM平分AOC,若76BOD,则BOM等于A.38B.104C.142D.1447.某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如下表所示:用电量(度)120140160180200户数23672则这20户家庭该月用电量的众数和中位数分别是A.180,160B.160,180C.160,160D.180,1808.小翔在如图1所示的场地上匀速跑步,他从点A出发,沿箭头所示方向经过点B跑到点C,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t(单位:秒),他与教练的距离为y(单位:米),表示y与t的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的A.点MB.点NC.点PD.点Q二、填空题(本题共16分,每小题4分)9.分解因式:269mnmnm.10.若关于x的方程220xxm有两个相等的实数根,则m的值是.11.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边40cmDE,20cmEF,测得边DF离地面的高度1.5mAC,8mCD,则树高ABm.12.在平面直角坐标系xOy中,我们把横、纵坐标都是整数的点叫做整点.已知点04A,,点B是x轴正半轴上的整点,记AOB△内部(不包括边界)的整点个数为m.当3m时,点B的横坐标的所有可能值是;当点B的横坐标为4n(n为正整数)时,m(用含n的代数式表示.)三、解答题(本题共30分,每小题5分)13.计算:101π3182sin458.14.解不等式组:43421.xxxx,15.已知023ab≠,求代数式225224ababab的值.16.已知:如图,点EAC,,在同一条直线上,ABCD∥,ABCEACCD,.求证:BCED.17.如图,在平面直角坐标系xOy中,函数40yxx的图象与一次函数ykxk的图象的交点为2Am,.(1)求一次函数的解析式;(2)设一次函数ykxk的图象与y轴交于点B,若P是x轴上一点,且满足PAB△的面积是4,直接写出点P的坐标.18.列方程或方程组解应用题:据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.四、解答题(本题共20分,每小题5分)19.如图,在四边形ABCD中,对角线ACBD,交于点E,9045302BACCEDDCEDE,,,,22BE.求CD的长和四边形ABCD的面积.20.已知:如图,AB是O⊙的直径,C是O⊙上一点,ODBC⊥于点D,过点C作O⊙的切线,交OD的延长线于点E,连结BE.(1)求证:BE与O⊙相切;(2)连结AD并延长交BE于点F,若9OB,2sin3ABC,求BF的长.21.近年来,北京市大力发展轨道交通,轨道运营里程大幅增加,2011年北京市又调整修订了2010至2020年轨道交通线网的发展规划.以下是根据北京市轨道交通指挥中心发布的有关数据制作的统计图表的一部分.请根据以上信息解答下列问题:(1)补全条形统计图并在图中标明相应数据;(2)按照2011年规划方案,预计2020年北京市轨道交通运营里程将达到多少千米?(3)要按时完成截至2015年的轨道交通规划任务,从2011到2015这4年中,平均每年需新增运营里程多少千米?22.操作与探究:(1)对数轴上的点P进行如下操作:先把点P表示的数乘以13,再把所得数对应的点向右平移1个单位,得到点P的对应点P.点AB,在数轴上,对线段AB上的每个点进行上述操作后得到线段AB,其中点AB,的对应点分别为AB,.如图1,若点A表示的数是3,则点A表示的数是;若点B表示的数是2,则点B表示的数是;已知线段AB上的点E经过上述操作后得到的对应点E与点E重合,则点E表示的数是;北京市轨道交通已开通线路相关数据统计表(截至2010年底)开通时间开通线路运营里程(千米)19711号线3119842号线23200313号线41八通线1920075号线2820088号线510号线25机场线2820094号线282010房山线22大兴线22亦庄线23昌平线2115号线20(2)如图2,在平面直角坐标系xOy中,对正方形ABCD及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一种实数a,将得到的点先向右平移m个单位,再向上平移n个单位(00mn,),得到正方形ABCD及其内部的点,其中点AB,的对应点分别为AB,。已知正方形ABCD内部的一个点F经过上述操作后得到的对应点F与点F重合,求点F的坐标。五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.已知二次函数23(1)2(2)2ytxtx在0x和2x时的函数值相等。(1)求二次函数的解析式;(2)若一次函数6ykx的图象与二次函数的图象都经过点(3)Am,,求m和k的值;(3)设二次函数的图象与x轴交于点BC,(点B在点C的左侧),将二次函数的图象在点BC,间的部分(含点B和点C)向左平移(0)nn个单位后得到的图象记为G,同时将(2)中得到的直线6ykx向上平移n个单位。请结合图象回答:当平移后的直线与图象G有公共点时,n的取值范围。24.在ABC△中,BABCBAC,,M是AC的中点,P是线段BM上的动点,将线段PA绕点P顺时针旋转2得到线段PQ。(1)若且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D,请补全图形,并写出CDB的度数;(2)在图2中,点P不与点BM,重合,线段CQ的延长线与射线BM交于点D,猜想CDB的大小(用含的代数式表示),并加以证明;(3)对于适当大小的,当点P在线段BM上运动到某一位置(不与点B,M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQQD,请直接写出的范围。25.在平面直角坐标系xOy中,对于任意两点111()Pxy,与222()Pxy,的“非常距离”,给出如下定义:若1212||||xxyy≥,则点1P与点2P的“非常距离”为12||xx;若1212||||xxyy,则点1P与点2P的“非常距离”为12||yy.例如:点1(12)P,,点2(35)P,,因为|13||25|,所以点1P与点2P的“非常距离”为|25|3,也就是图1中线段1PQ与线段2PQ长度的较大值(点Q为垂直于y轴的直线1PQ与垂直于x轴的直线2PQ的交点)。(1)已知点1(0)2A,,B为y轴上的一个动点,①若点A与点B的“非常距离”为2,写出一个满足条件的点B的坐标;②直接写出点A与点B的“非常距离”的最小值;(2)已知C是直线334yx上的一个动点,①如图2,点D的坐标是(0,1),求点C与点D的“非常距离”的最小值及相应的点C的坐标;②如图3,E是以原点O为圆心,1为半径的圆上的一个动点,求点C与点E的“非常距离”的最小值及相应的点E和点C的坐标。2012年北京中考数学试卷分析一、各个知识板块所占分值二、各个知识板块考查的难易程度三、试卷整体难度特点分析2012年北京中考数学刚刚结束,今年试卷整体呈现出“新颖”的特点,与近几年中考试题以及今年一模、二模试题有比较大的差异。总体难度与去年持平,但是最难的题目难度并没有去年高。考生做起来会感觉不太顺手,此份试卷对于优秀学生的区分度将会比去年大,而对于中当学生的区分度将不会有太大变化。此份试卷呈现出以下几个特点:1.题目的背景和题型都比较新颖。例如选择题的第8题、解答题第25题,尤其是25题第一次在代数题目中用到了定义新运算,题目很新颖,知识点融合度较高。考察的方式都是平常同学们很少见到的题型。2.填空题第12题试题结构与往年不同,考察观察能力和精确作图能力。本试卷的填空题第12题,需要同学们在试卷上画出比较精确的线段才能很好的发现其中的规律,而所体现的规律本身并不复杂,是一个等差数列问题。3.弱化了对于梯形的考察。解答题第19题并没有像之前一样是一道题型的问题,取而代之的是一道四边形的题目。难度并不大。4.与圆有关的题目增多,例如选择题第8题、解答题第20题。解答题第24题第二问也可以通过构造辅助圆来解决。5.考察学生对于知识点的深入理解能力。解答题第23题第三小问,重点考察直线与抛物线位置关系的深入理解,难度较大。四、试题重点题目分析(2012年北京中考第23题)23.已知二次函数23(1)2(2)2ytxtx在0x和2x时的函数值相等。(4)求二次函数的解析式;(5)若一次函数6ykx的图象与二次函数的图象都经过点(3)Am,,求m和k的值;(6)设二次函数的图象与x轴交于点BC,(点B在点C的左侧),将二次函数的图象在点BC,间的部分(含点B和点C)向左平移(0)nn个单位后得到的图象记为G,同时将(2)中得到的直线6ykx向上平移n个单位。请结合图象回答:当平移后的直线与图象G有公共点时,n的取值范围。【解析】⑴由题意可知依二次函数图象的对称轴为1x则22121tt。∴32t∴2322yxx1⑵∵因二次函数图象必经过A点∴21333622m×又一次函数6ykx的图象经过A点∴366k,∴4k⑶由题意可知,点BC,间的部分图象的解析式为1312yxx,13x≤≤则向左平移后得到的图象C的解析式为312yxnxn113nxn≤≤此时平移后的解析式为46yxn由图象可知,平移后的直线与图象C有公共点,则两个临界的交点为10n,与30n,则0416nn23n0436nn6n∴263n≤≤坐标为(3-n,0)【评价】前两问都比较简单,第三问有一定难度,考察学生对于函数图象平移的理解,以及对于直线与抛物线位置关系的运用。此题的关键在于临界点讨论需要同学们能够表示出临界点的坐标,带入直线解析式即可得到n的取值范围。(2012年北京中考第24题)24.在ABC△中,BABCBAC,,M是AC的中点,P是线段BM上的动点,将线段PA绕点P顺时针旋转2得到线段PQ。(1)若且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D,请补全图形,并写出CDB的度数;(2)在图2中,点P不与点BM,重合,线段CQ的延长线与

1 / 12
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功