灰色系统理论简介(1)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

报告的主要内容灰色系统理论发展概况灰色关联技术灰色生成技术灰色系统模型灰色预测一、灰色系统理论发展概况(1)灰色系统理论的提出著名学者邓聚龙教授于20世纪70年代末、80年代初提出;诞生标志:邓教授第一篇灰色系统论文“TheControlProblemsofGreySystems”,发表于北荷兰出版公司期刊System&ControlLetter,1982,No.5。提出意义:(1)是系统思维和系统思想在方法论上的具体体现;(2)是科学方法论上的重大进展,具有原创性的科学意义和深远的学术影响,是对系统科学的新贡献。一、灰色系统理论发展概况(2)灰色系统理论的研究对象“部分信息已知,部分信息未知”的“小样本、贫信息”不确定性系统。灰色系统理论的研究内容灰哲学、灰哲学、灰生成、灰分析、灰建模、灰预测、灰决策、灰控制、灰评估、灰数学等。灰色系统理论的应用领域农业科学、经济管理、环境科学、医药卫生、矿业工程、教育科学、水利水电、图像信息、生命科学、控制科学等。一、灰色系统理论发展概况(3)项目灰色系统概率统计模糊数学研究对象贫信息不确定随机不确定认知不确定基础集合灰色朦胧集康托集模糊集方法依据信息覆盖映射映射途径手段灰序列算子频率统计截集数据要求任意分布典型分布隶属度可知侧重点内涵内涵外延目标现实规律历史统计规律认知表达特色小样本大样本凭经验三种不确定性系统研究方法的比较分析(灰色系统理论、概率统计、模糊数学)二、灰色关联分析技术(1)基本原理通过对统计序列几何关系的比较来分清系统中多因素间的关联程度,序列曲线的几何形状越接近,则它们之间的关联度越大。基本功能分析因子与行为的影响判别主要和次要因子识别模式确认同构鉴别效果灰色关联聚类灰色关联决策二、灰色关联分析技术(2)1.点关联度设},,,{10nxxxX为灰关联因子集,0x为参考序列,ix为比较序列,)(0kx,)(kxi分别为0x与ix的第k个点的数,即))(,),2(),1((0200nxxxx,mtnxxxxtttt,,2,1)),(,),2(),1((给定))(),((0kxkxi为实数,k为k点权重,满足1,101nkkk;若实数))(),((),(010kxkxxxinkki满足1)规范性:1),(00ixx,iixxxx,0),(00,iixxxx001),(2)偶对对称性:},{),(),(,,yxXxyyxXyx3)整体性}2},,,2,1,0{,nnxXxxij,),(),(jioftenijxxxx4)接近性|)()(|0kxkxi越小,))(),((0kxkxi越大则称),(0ixx为0x对ix的灰关联度,亦称为灰关联映射.上述四个条件也称为灰关联四公理。二、灰色关联分析技术(3)1.点关联度(续)如果max0max0)())(),((kkxkxii))(),((),(010kxkxxxinkki其中)()()(00kxkxkii为绝对差,)(maxmax0maxkiki为两极最大差,为分辨系数,)1,0(,一般地,取5.0,则),(0ixx满足灰关联四公理上述定义的))(),((0kxkxi称为k点灰色关联系数,),(0ixx称为灰色关联度。二、灰色关联分析技术(4)2.其它关联度将点关联度进行推广,可以得到如下其他形式的关联度(具体参见《灰技术基础及其应用》,肖新平等著,2005)区间关联度向量关联度复数关联度复向量序列的关联度区间灰数向量序列的关联度矩阵序列在范数下的关联度区间灰数矩阵的关联度二、灰色关联技术(5)灰色关联技术的应用1.直接应用因素分析方案决策优势分析2.与其他方法结合灰色关联和聚类方法相结合灰色关联分析和层次分析法相结合优化方法、非线性模型与灰关联分析相结合二、灰色关联技术(6)灰色关联技术的应用3.应用新领域应用于安全科学中,如煤矿安全的分析与评估应用于环境科学中,如水质评价、大气环境质量评价等应用于医学诊断中应用于油田的开发中应用于系统水文学中此外,在灰色关联技术的带动下,相继产生了灰色地质学、灰色育种学、灰色控制理论、灰色混沌理论、区域经济灰色系统分析、灰色价值学、灰色综防学等新兴学科。三、灰生成技术(1)1.灰生成的定义:将原始数据通过某种运算变换为新数据的过程。灰生成是使灰过程变白的一种方法。2.灰生成的作用:能为建模提供中间信息,并弱化原始数据的随机性。使任意非负数列、摆动的与非摆动的数列转化为具有近似的指数规律的数列。三、灰生成技术(2)x3.灰生成的主要方法:(1)层次变换灰生成方法累加生成、累减生成、反向累加、反向累减等。(2)数值变换灰生成方法初值化生成、均值化生成、区间值化生成、对数生成、方根变换生成、对数-幂函数生成、函数变换生成、Cotx变换生成等。(3)极性变换灰生成方法上限效果测度、下限效果测度、适中效果测度。x累加生成的定义将原始序列中的数据,按数据间的时刻顺序依次累加所得到的新数列,称为累加生成数列。这种数据处理方式称为累加生成,记为AGO(AccumulatedGeneratingOperation)设)0(x为原始序列))(,),2(),1(()0()0()0()0(nxxxx,如果)()(1)0()1(mxkxkm,nk,,2,1))(,),2(),1(()1()1()1()1(nxxxx则数列)1(x为)0(x的一次累加生成数列。类似地,如果)()(kxr与)()1(kxr之间满足下列关系)()(1)1()(mxkxkmrr,nk,,2,1则)()(kxr为)()1(kxr地一次累加生成数。累加生成是最具核心的生成,也可以说是灰色系统理论创造性的成果。四.灰色系统模型灰色系统模型简介常用灰色系统模型GM(1,1)模型发展的四阶段灰色系统模型应用灰建模概念在序列的基础上,近似微分方程模型,称为灰建模。近似微分方程模型称为灰模型。灰模型特性灰色模型既不是一般的函数模型,也不是完全(纯粹)的差分方程模型,或者完全(纯粹)的微分方程模型,而是具有部分差分、部分微分性质的模型。灰色模型建模条件结构条件、材料条件、品质条件1、灰色系统模型简介四.灰色系统模型2、常见灰色系统模型GM(1,1)模型GM(1,N)模型GM(0,N)模型GM(2,1)模型verhulst模型目前,最常用、研究最多的是GM(1,1)模型。四.灰色系统模型3、GM(1,1)模型的发展四阶段阶段一:同化阶段把GM(1,1)模型作为经典数学模型来考虑,或用一般的数学概念来描述,等同于一般的微分方程。该阶段属于初级阶段。abeabxkxbaxdtdxak])1([)1(ˆ,)0()1(四.灰色系统模型阶段二:异化阶段灰色模型从微分方程模型中逐渐分离出来,建立GM(1,1)模型的影子方程或白化方程。该阶段属于发展阶段。GM(1,1)模型的发展四阶段(2)(0)(1)()()xkazkb四.灰色系统模型阶段三:融化阶段有充实的理论基础;建立定义型、白化型、派生模型型、派生型、派生模型指数型、派生模型内涵型等多种式,其显著特点是模型具有解与方程统一的性质;灰色GM(1,1)模型的高级阶段。GM(1,1)模型的发展四阶段(3)四.灰色系统模型阶段四:进化阶段打破发展系数(-2,+2)的范围;提出了GM(1,1)模型及其推理模型;模型的最新阶段。GM(1,1)模型的发展四阶段(4)r,|四.灰色系统模型4、GM(1,1)模型的建模步骤(1)第一步:级比检验、建模可行性分析第二步:数据变换处理数据变换处理的原则是经过处理后的序列级比落在可容覆盖中,从而对于级比不合格的序列,可保证经过选择数据变换处理后能够进行GM(1,1)建模。通常的数据变换有平移变换、对数变换、方根变换。对于给定序列,能否建立精度较高的GM(1,1)预测模型,一般可用的级比的大小与所属区间,即其覆盖来判断。)0(x)0(x四.灰色系统模型第三步:GM(1,1)建模GM(1,1)模型(0)(1)()()xkazkb的时间响应序列为(1)(0)ˆ(1)((1))akbbxkxeaa,1,2,,kn还原值(0)ˆ(1)xk(1)ˆ(1)xk(1)(0)ˆ()(1)((1))aakbxkexea4、GM(1,1)模型的建模步骤(2)四.灰色系统模型第四步:模型检验1.事中检验通常采用残差检验、后验差检验、关联度检验与级比偏差检验。2、事后检验事后检验即预测检验,主要为滚动检验,就是用时间存在轴上左边的数据(前面的数据)建立模型,预测下一个数据(后面一个数据),以了解其预测误差。第五步:预测4、GM(1,1)模型的建模步骤(3)四.灰色系统模型5、灰色系统模型应用四.灰色系统模型灰色系统模型在农业科学、经济管理、环境科学、医药卫生、矿业工程、教育科学、水利水电、图像信息、生命科学、控制科学、航空航天等众多领域中得到了广泛的应用,解决了许多过去难以解决的实际问题,展示了极为广泛的应用前景。五、灰色预测(1)灰预测是灰色系统理论中的一个重要内容,它是指基于灰色系统理论的GM(1,1)模型的预测。灰预测可分为五类:1.数列预测(SequenceGreyPrediction)级比落于可容区的(大)惯性序列,可以直接建立GM(1,1)模型,以预测数据值的分布,称为数列灰预测。概括的来说,即为对数据大小进行的预测。)()0(k五、灰色预测(2)2.灾变(异常值)灰预测(CalamitiesGreyPrediction)对于级比不是全部落于可容区的小惯性序列,对跳变点时分布建模以预测跳变点未来的时分布称为灾变灰预测,或异常值灰预测。通俗的说,即为对一定时间内是否发生灾变,或某种异常的数据可能发生在哪些年代的预测。3.季节灾变灰预测(SeasonalCalamitiesGreyPrediction)对发生在特定时区(季节)的事件作时分布预测,称为季节灾变灰预测。通俗的说,即为对一年或某个季节内发生的灾变或异常值进行的预测。五、灰色预测(3)4.拓扑灰预测(TopologicalGreyPrediction)对于大幅度摆动序列,按点集拓扑基选取时分布序列,作GM(1,1)建模,预测拓扑基的时分布,以达到预测摆动序列未来发展态势的目的,称为拓扑灰预测。它是一种全波形预测,是整体预测。5.系统灰预测(SystematicGreyPrediction)由多个行为变量形成的灰微分方程组,通过GM(1,1)嵌套的方法,预测多个行为变量的发展变化,以避免解高阶特征方程之繁,称为系统灰预测。Thankyouforyourattention!

1 / 28
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功