1直线、平面垂直的判定与性质[最新考纲]1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线、面垂直的有关性质与判定定理.2.能运用公理、定理和已获得的结论证明一些空间图形垂直关系的简单命题.知识梳理1.直线与平面垂直(1)定义:若直线l与平面α内的任意一条直线都垂直,则直线l与平面α垂直.(2)判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直(线线垂直⇒线面垂直).即:a⊂α,b⊂α,l⊥a,l⊥b,a∩b=P⇒l⊥α.(3)性质定理:垂直于同一个平面的两条直线平行.即:a⊥α,b⊥α⇒a∥b.2.平面与平面垂直(1)定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.(2)判定定理:一个平面过另一个平面的垂线,则这两个平面垂直.即:a⊂α,a⊥β⇒α⊥β.(3)性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.即:α⊥β,a⊂α,α∩β=b,a⊥b⇒a⊥β.3.直线与平面所成的角(1)定义:平面的一条斜线和它在平面上的射影所成的锐角,叫做这条斜线和这个平面所成的角.(2)线面角θ的范围:θ∈0,π2.4.二面角的有关概念(1)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角.(2)二面角的平面角:二面角棱上的一点,在两个半平面内分别作与棱垂直的射线,则两射线所成的角叫做二面角的平面角.辨析感悟21.对线面垂直的理解(1)直线a,b,c;若a⊥b,b⊥c,则a∥c.(×)(2)直线l与平面α内无数条直线都垂直,则l⊥α.(×)(3)(教材练习改编)设m,n是两条不同的直线,α,β是两个不同的平面,若m∥n,m⊥α,则n⊥α.(√)(4)(教材习题改编)设l为直线,α,β是两个不同的平面,若α⊥β,l∥α,则l⊥β.(×)2.对面面垂直的理解(5)若两平面垂直,则其中一个平面内的任意一条直线垂直于另一个平面.(×)(6)若平面α内的一条直线垂直于平面β内的无数条直线,则α⊥β.(×)[感悟·提升]三个防范一是注意在空间中垂直于同一直线的两条直线不一定平行,还有可能异面、相交等,如(1);二是注意使用线面垂直的定义和线面垂直的判定定理,不要误解为“如果一条直线垂直于平面内的无数条直线,就垂直于这个平面”,如(2);三是判断线面关系时最容易漏掉线在面内的情况,如(6).3考点一直线与平面垂直的判定和性质【例1】如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.证明:(1)CD⊥AE;(2)PD⊥平面ABE.证明(1)在四棱锥P-ABCD中,∵PA⊥底面ABCD,CD⊂平面ABCD,∴PA⊥CD.∵AC⊥CD,PA∩AC=A,∴CD⊥平面PAC.而AE⊂平面PAC,∴CD⊥AE.(2)由PA=AB=BC,∠ABC=60°,可得AC=PA.∵E是PC的中点,∴AE⊥PC.由(1),知AE⊥CD,且PC∩CD=C,∴AE⊥平面PCD.而PD⊂平面PCD,∴AE⊥PD.∵PA⊥底面ABCD,∴PA⊥AB.又∵AB⊥AD且PA∩AD=A,∴AB⊥平面PAD,而PD⊂平面PAD,∴AB⊥PD.又∵AB∩AE=A,∴PD⊥平面ABE.规律方法证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中一条垂直于这个平面,则另一条也垂直于这个平面).解题时,注意线线、线面与面面关系的相互转化;另外,在证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高、中线和顶角的角平分线三线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形(或给出线段长度,经计算满足勾股定理)、直角梯形等等.4【训练1】如图,直四棱柱ABCD-A1B1C1D1中,AB∥CD,AD⊥AB,AB=2,AD=2,AA1=3,E为CD上一点,DE=1,EC=3.证明:BE⊥平面BB1C1C.证明过B作CD的垂线交CD于F,则BF=AD=2,EF=AB-DE=1,FC=2.在Rt△BEF中,BE=3.在Rt△CFB中,BC=6.在△BEC中,因为BE2+BC2=9=EC2,故BE⊥BC.由BB1⊥平面ABCD,得BE⊥BB1,又BB1∩BC=B,所以BE⊥平面BB1C1C.考点二平面与平面垂直的判定与性质【例2】(·深圳一模)如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB=BC=AA1,且AC=2BC,点D是AB的中点.证明:平面ABC1⊥平面B1CD.证明∵ABC-A1B1C1是棱柱,且AB=BC=AA1=BB1,∴四边形BCC1B1是菱形,∴B1C⊥BC1.由AA1⊥平面ABC,AA1∥BB1,得BB1⊥平面ABC.∵AB⊂平面ABC,∴BB1⊥AB,又∵AB=BC,且AC=2BC,∴AB⊥BC,而BB1∩BC=B,BB1,BC⊂平面BCC1B1,5∴AB⊥平面BCC1B1,而B1C⊂平面BCC1B1,∴AB⊥B1C,而AB∩BC1=B,AB,BC1⊂平面ABC1.∴B1C⊥平面ABC1,而B1C⊂平面B1CD,∴平面ABC1⊥平面B1CD.规律方法证明两个平面垂直,首先要考虑直线与平面的垂直,也可简单地记为“证面面垂直,找线面垂直”,是化归思想的体现,这种思想方法与空间中的平行关系的证明非常类似,这种转化方法是本讲内容的显著特征,掌握化归与转化思想方法是解决这类问题的关键.【训练2】如图,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M是棱CC1的中点.证明:平面ABM⊥平面A1B1M.证明由长方体的性质可知A1B1⊥平面BCC1B1,又BM⊂平面BCC1B1,所以A1B1⊥BM.又CC1=2,M为CC1的中点,所以C1M=CM=1.在Rt△B1C1M中,B1M=B1C21+MC21=2,同理BM=BC2+CM2=2,又B1B=2,所以B1M2+BM2=B1B2,从而BM⊥B1M.又A1B1∩B1M=B1,所以BM⊥平面A1B1M,因为BM⊂平面ABM,所以平面ABM⊥平面A1B1M.考点三平行、垂直关系的综合问题【例3】如图,在四棱锥P-ABCD中,AB⊥AC,AB⊥PA,AB∥CD,AB=2CD,E,F,G,M,N分别为PB,AB,BC,PD,PC的中点.(1)求证:CE∥平面PAD;6(2)求证:平面EFG⊥平面EMN.审题路线(1)取PA的中点H⇒证明四边形DCEH是平行四边形⇒CE∥DH⇒根据线面平行的判定定理可证.(2)证明AB⊥EF⇒证明AB⊥FG⇒证明AB⊥平面EFG⇒证明MN⊥平面EFG⇒得到结论.证明(1)如图,取PA的中点H,连接EH,DH.因为E为PB的中点,所以EH∥AB,且EH=12AB.又AB∥CD,且CD=12AB,所以EH綉CD.所以四边形DCEH是平行四边形.所以CE∥DH.又DH⊂平面PAD,CE⊄平面PAD,所以CE∥平面PAD.(2)因为E,F分别为PB,AB的中点,所以EF∥PA.又AB⊥PA,且EF,PA共面,所以AB⊥EF.同理可证AB⊥FG.又EF∩FG=F,EF⊂平面EFG,FG⊂平面EFG,因此AB⊥平面EFG.7又M,N分别为PD,PC的中点,所以MN∥DC.又AB∥DC,所以MN∥AB,因此MN⊥平面EFG.又MN⊂平面EMN,所以平面EFG⊥平面EMN.规律方法线面关系与面面关系的证明离不开判定定理和性质定理,而形成结论的“证据链”依然是通过挖掘题目已知条件来实现的,如图形固有的位置关系、中点形成的三角形的中位线等,都为论证提供了丰富的素材.【训练3】如图,AB是圆O的直径,PA垂直圆O所在的平面,C是圆O上的点.(1)求证:BC⊥平面PAC;(2)设Q为PA的中点,G为△AOC的重心,求证:QG∥平面PBC.证明(1)由AB是圆O的直径,得AC⊥BC,由PA⊥平面ABC,BC⊂平面ABC,得PA⊥BC.又PA∩AC=A,PA⊂平面PAC,AC⊂平面PAC,所以BC⊥平面PAC.(2)连接OG并延长交AC于M,连接QM,QO,由G为△AOC的重心,得M为AC中点.由Q为PA中点,得QM∥PC,又O为AB中点,得OM∥BC.因为QM∩MO=M,QM⊂平面QMO,MO⊂平面QMO,BC∩PC=C,BC⊂平面PBC,PC⊂平面PBC.所以平面QMO∥平面PBC.因为QG⊂平面QMO,所以QG∥平面PBC.8考点四线面角、二面角的求法【例4】如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.(1)求PB和平面PAD所成的角的大小;(2)证明AE⊥平面PCD;(3)求二面角A-PD-C的正弦值.审题路线(1)先找出PB和平面PAD所成的角,线面角的定义要能灵活运用;(2)可以利用线面垂直根据二面角的定义作角.(1)解在四棱锥P-ABCD中,因PA⊥底面ABCD,AB⊂平面ABCD,故PA⊥AB.又AB⊥AD,PA∩CD=A,从而AB⊥平面PAD,故PB在平面PAD内的射影为PA,从而∠APB为PB和平面PAD所成的角.在Rt△PAB中,AB=PA,故∠APB=45°.所以PB和平面PAD所成的角的大小为45°.(2)证明在四棱锥P-ABCD中,因PA⊥底面ABCD,CD⊂平面ABCD,故CD⊥PA.由条件CD⊥AC,PA∩AC=A,∴CD⊥平面PAC.又AE⊂平面PAC,∴AE⊥CD.由PA=AB=BC,∠ABC=60°,可得AC=PA.∵E是PC的中点,∴AE⊥PC.又PC∩CD=C,综上得AE⊥平面PCD.9(3)解过点E作EM⊥PD,垂足为M,连接AM,如图所示.由(2)知,AE⊥平面PCD,AM在平面PCD内的射影是EM,则AM⊥PD.因此∠AME是二面角A-PD-C的平面角.由已知,可得∠CAD=30°.设AC=a,可得PA=a,AD=233a,PD=213a,AE=22a.在Rt△ADP中,∵AM⊥PD,∴AM·PD=PA·AD,则AM=PA·ADPD=a·233a213a=277a.在Rt△AEM中,sin∠AME=AEAM=144.所以二面角A-PD-C的正弦值为144.规律方法(1)求直线与平面所成的角的一般步骤:①找直线与平面所成的角,即通过找直线在平面上的射影来完成;②计算,要把直线与平面所成的角转化到一个三角形中求解.(2)作二面角的平面角可以通过垂线法进行,在一个半平面内找一点作另一个半平面的垂线,再过垂足作二面角的棱的垂线,两条垂线确定的平面和二面角的棱垂直,由此可得二面角的平面角.【训练4】在正方体ABCD-A1B1C1D1中,BB1与平面ACD1所成角的余弦值为().A.23B.3310C.23D.63解析如图,连接BD交AC于O,连接D1O,由于BB1∥DD1,∴DD1与平面ACD1所成的角就是BB1与平面ACD1所成的角.易知∠DD1O即为所求.设正方体的棱长为1,则DD1=1,DO=22,D1O=62,∴cos∠DD1O=DD1D1O=26=63.∴BB1与平面ACD1所成角的余弦值为63.答案D1.转化思想:垂直关系的转化2.在证明两平面垂直时一般先从现有的直线中寻找平面的垂线,若这样的直线图中不存在,则可通过作辅助线来解决.如有平面垂直时,一般要用性质定理,在一个平面内作交线的垂线,使之转化为线面垂直,然后进一步转化为线线垂直.故熟练掌握“线线垂直”、“面面垂直”间的转化条件是解决这类问题的关键.创新突破7——求解立体几何中的探索性问题【典例】(·北京卷)如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点.将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.11突破1:弄清翻折前后的线面关系和几何量的度量值.翻折前:DE∥BC,DE⊥AC⇒翻折后:D