第一课数二轮复习-精选第一部分-25个必考问题-专项突破《必考问题21--二项式定理-》课件课件-苏

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

必考问题21二项式定理及数学归纳法抓住命题方向【真题体验】1.(2012·苏北四市调研)已知an=(1+2)n(n∈N*)(1)若an=a+b2(a,b∈Z),求证:a是奇数;(2)求证:对于任意n∈N*都存在正整数k,使得an=k-1+k.证明(1)由二项式定理,得an=C0n+C1n2+C2n(2)2+C3n(2)3+…+Cnn(2)n,所以a=C0n+C2n(2)2+C4n(2)4+…=1+2C2n+22C4n+…,因为2C2n+22C4n+…为偶数,所以a是奇数.(2)由(1)设an=(1+2)n=a+b2(a,b∈Z),则(1-2)n=a-b2,所以a2-2b2=(a+b2)(a-b2)=(1+2)n(1-2)n=(1-2)n,当n为偶数时,a2=2b2+1,存在k=a2,使得an=a+b2=a2+2b2=k+k-1,当n为奇数时,a2=2b2-1,存在k=2b2,使得an=a+b2=a2+2b2=k-1+k,综上,对于任意n∈N*,都存在正整数k,使得an=k-1+k.2.(2010·江苏,23)已知△ABC的三边长都是有理数.(1)求证:cosA是有理数;(2)求证:对任意正整数n,cosnA是有理数.(1)证明设三边长分别为a,b,c,cosA=b2+c2-a22bc,∵a,b,c是有理数,b2+c2-a2是有理数,分母2bc为正有理数,又有理数集对于除法具有封闭性,∴b2+c2-a22bc必为有理数,∴cosA是有理数.(2)证明①当n=1时,显然cosA是有理数;当n=2时,∵cos2A=2cos2A-1,因为cosA是有理数,∴cos2A也是有理数;②假设当n≤k(k≥2)时,结论成立,即coskA、cos(k-1)A均是有理数.当n=k+1时,cos(k+1)A=coskAcosA-sinkAsinA=coskAcosA-12[cos(kA-A)-cos(kA+A)]=coskAcosA-12cos(k-1)A+12cos(k+1)A解得:cos(k+1)A=2coskAcosA-cos(k-1)A∵cosA,coskA,cos(k-1)A均是有理数,∴2coskAcosA-cos(k-1)A是有理数,∴cos(k+1)A是有理数.即当n=k+1时,结论成立.综上所述,对于任意正整数n,cosnA是有理数.高考对本内容的考查主要有:(1)二项式定理的简单应用,B级要求;(2)数学归纳法的简单应用,B级要求(1)对于二项式定理只要掌握二项式定理、通项、项的系数的求法,掌握赋值法即可.(2)数学归纳法主要是用来解决与自然数有关的命题.通常与数列、不等式证明等基础知识和基本技能相结合来考查逻辑推理能力,要了解数学归纳法的原理,并能加以简单的应用.【高考定位】【应对策略】必备知识方法必备知识1.二项式定理(1)二项式定理:(a+b)n=C0nan+C1nan-1b+…+Crnan-rbr+…+Cnnbn,上式中右边的多项式叫做(a+b)n的二项展开式,其中Crn(r=1,2,3,…,n)叫做二项式系数,式中第r+1项叫做展开式的通项,用Tr+1表示,即Tr+1=Crnan-rbr;(2)(a+b)n展开式中二项式系数Crn(r=1,2,3,…,n)的性质:①与首末两端“等距离”的两项的二项式系数相等,即Crn=Cn-rn;②C0n+C1n+C2n+…+Cnn=2n;C0n+C2n+…=C1n+C3n+…=2n-1.2.数学归纳法运用数学归纳法证明命题要分两步,第一步是归纳奠基(或递推基础)证明当n取第一个值n0(n0∈N*)时命题成立,第二步是归纳递推(或归纳假设)假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立,只要完成这两步,就可以断定命题对从n0开始的所有的正整数都成立,两步缺一不可.必备方法1.二项式定理(1)求二项式定理中有关系数的和通常用“赋值法”.(2)二项式展开式的通项公式Tr+1=Crnan-rbr是展开式的第r+1项,而不是第r项.2.数学归纳法(1)利用数学归纳法证明代数恒等式的关键是将式子转化为与归纳假设的结构相同的形式,然后利用归纳假设,经过恒等变形,得到结论.(2)利用数学归纳法证明三角恒等式时,常运用有关的三角知识、三角公式,要掌握三角变换方法.(3)利用数学归纳法证明不等式问题时,在由n=k成立,推导n=k+1成立时,过去讲的证明不等式的方法在此都可利用.(4)用数学归纳法证明整除性问题时,可把n=k+1时的被除式变形为一部分能利用归纳假设的形式,另一部分能被除式整除的形式.(5)解题时经常用到“归纳——猜想——证明”的思维模式.热点命题角度命题角度一二项式定理的应用[命题要点](1)二项展开式中的二项式系数和展开式系数;(2)求二项展开式的特定项;(3)二项展开式的性质的应用.【例1】►(2012·南师附中模拟)若二项式(1+2x)n展开式中第6项与第7项的系数相等,求展开式中二项式系数最大的项.[审题视点]根据展开式中第6项与第7项的系数相等,得到关于n的方程,解得n,再写出二项展开式系数,由二项式系数的性质得到结果.[听课记录]解∵在(1+2x)n的展开式中第6项与第7项的系数相等,∴C5n25=C6n26,∴n=8,∴二项式系数是Cr8,由Cr8≥Cr-18且Cr8≥Cr+18,得r=4,即展开式中二项式系数最大的项是第5项为C4824.二项式系数的最大项与展开式系数的最大项不同,本题的第r+1项的二项式系数是Cr8,而展开式系数却是2rCr8,解题时要分清.【突破训练1】(2012·盐城模拟)已知数列{an}的首项为1,p(x)=a1C0n(1-x)n+a2C1nx(1-x)n-1+a3C2nx2(1-x)n-2+…+anCn-1nxn-1(1-x)+an+1Cnnxn(1)若数列{an}是公比为2的等比数列,求p(-1)的值;(2)若数列{an}是公比为2的等差数列,求证:p(x)是关于x的一次多项式.(1)解法一由题设知,an=2n-1.p(-1)=1·C0n(-1)0·2n+2·C1n(-1)1·2n-1+22·C2n(-1)2·2n-2+…+2n·Cnn(-1)n·20=C0n(-2)0·2n+C1n(-2)1·2n-1+C2n(-2)2·2n-2+…+Cnn(-2)n·20=(-2+2)n=0.法二若数列{an}是公比为2的等比数列,则an=2n-1,故p(x)=C0n(1-x)n+C1n(2x)(1-x)n-1+C2n(2x)2(1-x)n-2+…+Cn-1n(2x)n-1(1-x)+Cnn(2x)n=[(1-x)+2x]n=(1+x)n.所以p(-1)=0.(2)证明若数列{an}是公差为2的等差数列,则an=2n-1.p(x)=a1C0n(1-x)n+a2C1nx(1-x)n-1+…+anCn-1nxn-1(1-x)+an+1Cnnxn=C0n(1-x)n+(1+2)C1nx(1-x)n-1+(1+4)C2nx2(1-x)n-2+…+(1+2n)Cnnxn=[C0n(1-x)n+C1nx(1-x)n-1+C2nx2(1-x)n-2+…+Cnnxn]+2[C1nx(1-x)n-1+2C2nx2(1-x)n-2+…+Cnnxn].由二项式定理知,C0n(1-x)n+C1nx(1-x)n-1+C2nx2(1-x)n-2+…+Cnnxn=[(1-x)+x]n=1.因为kCkn=k·n!k!n-k!=n·n-1!k-1!n-k!=nCk-1n-1,所以C1nx(1-x)n-1+2C2nx2(1-x)n-2+…+nCnnxn=nC0n-1x(1-x)n-1+nC1n-1x2(1-x)n-2+…+nCn-1n-1xn=nx[C0n-1(1-x)n-1+C1n-1x(1-x)n-2+…+Cn-1n-1xn-1]=nx[(1-x)+x]n-1=nx,所以p(x)=1+2nx.即p(x)是关于x的一次多项式.命题角度二数学归纳法的应用[命题要点](1)证明代数恒等式;(2)证明不等式问题;(3)证明三角恒等式;(4)证明整除性问题.【例2】►(2012·南京模拟)记1+x21+x22…1+x2n的展开式中,x的系数为an,x2的系数为bn,其中n∈N*.(1)求an;(2)是否存在常数p,q(p<q),使bn=131+p2n1+q2n,对n∈N*,n≥2恒成立?证明你的结论.[审题视点]可以先用特殊值代入,求出p,q得到猜想,再用数学归纳法证明猜想的正确性.[听课记录]解(1)根据多项式乘法运算法则,得an=12+122+…+12n=1-12n.(2)计算得b2=18,b3=732.代入bn=131+p2n1+q2n,解得p=-2,q=-1.下面用数学归纳法证明bn=131-12n-11-12n=13-12n+23×14n(n≥2且n∈N*)①当n=2时,b2=18,结论成立.②设n=k时成立,即bk=13-12k+23×14k,则当n=k+1时,bk+1=bk+ak2k+1=13-12k+23×14k+12k+1-122k+1=13-12k+1+23×14k+1.由①②可得结论成立.运用数学归纳法证明命题P(n),由P(k)成立推证P(k+1)成立,一定要用到条件P(k),否则不是数学归纳法证题.【突破训练2】(2012·泰州中学调研)已知多项式f(n)=15n5+12n4+13n3-130n.(1)求f(-1)及f(2)的值;(2)试探求对一切整数n,f(n)是否一定是整数?并证明你的结论.解(1)f(-1)=0,f(2)=17(2)先用数学归纳法证明,对一切正整数n,f(n)是整数.①当n=1时,f(1)=1,结论成立.②假设当n=k(k≥1,k∈N)时,结论成立,即f(k)=15k5+12k4+13k3-130k是整数,则当n=k+1时,f(k+1)=15(k+1)5+12(k+1)4+13(k+1)3-130(k+1)=C05k5+C15k4+C25k3+C35k2+C45k+C555+C04k4+C14k3+C24k2+C14k+C442+C03k3+C13k2+C23k+C333-130(k+1)=f(k)+k4+4k3+6k2+4k+1.根据假设f(k)是整数,而k4+4k3+6k2+4k+1显然是整数.∴f(k+1)是整数,从而当n=k+1时,结论也成立.由①、②可知对一切正整数n,f(n)是整数.(Ⅰ)当n=0时,f(0)=0是整数(Ⅱ)当n为负整数时,令n=-m,则m是正整数,由(Ⅰ)知f(m)是整数,所以f(n)=f(-m)=15(-m)5+12(-m)4+13(-m)3-130(-m)=-15m5+12m4-13m3+130m=-f(m)+m4是整数.综上,对一切整数n,f(n)一定是整数.阅卷老师叮咛20.证明步骤要完整,变形要有依据一、证明的两个步骤缺一不可【例1】►求证:2n>2n+1(n≥3).解用数学归纳法证明:第一步:(1)n=3时,23=8,2×3+1=7,不等式2n>2n+1(n≥3)成立.第二步:(2)假设n=k(k≥3,且k∈N*)时,不等式成立,即2k>2k+1,则2k+1=2·2k>2(2k+1)=4k+2=2(k+1)+2k>2(k+1)+1,即2k+1>2(k+1)+1.所以当n=k+1时也成立.老师叮咛:不验证初始值的正确性就没有归纳的基础,没有运用归纳假设的证明不是数学归纳法,证明的两个步骤缺一不可.二、正确写出从n=k(k≥n0,k∈N*)到n=k+1时应添加的项【例2】►用数学归纳法证明(n+1)(n+2)…(n+n)=2n·1·3·…·(2n-1),从k到k+1,左边需要增乘的代数式为________.解析当n=k时,左边=(k+1)(k+2)·…·(k+k),当n=k+1时,左边=[(k+1)+1][(k+1)+2]·…·[(k+1)+(k+

1 / 36
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功