求数列{an}通项公式的方法1.1na=na+)(nf型累加法:na=(na-1na)+(1na-2na)+…+(2a-1a)+1a=)1(nf+)2(nf+…+)1(f+1a例1.已知数列{na}满足1a=1,1na=na+n2(n∈N+),求na.[解]na=na-1na+1na-2na+…+2a-1a+1a=12n+22n+…+12+1=2121n=n2-1∴na=n2-1(n∈N+)3.1na=pna+q型(p、q为常数)方法:(1)1na+1pq=)1(pqapn,再根据等比数列的相关知识求na.(2)1na-na=)(1nnaap再用累加法求na.(3)11nnpa=nnpa+1npq,先用累加法求nnpa再求na.例3.已知{na}的首项1a=a(a为常数),na=21na+1(n∈N+,n≥2),求na.[解]设na-λ=2(1na-λ),则λ=-1∴na+1=2(1na+1)∴{1na}为公比为2的等比数列.∴na+1=(a+1)·12n∴na=(a+1)·12n-12.)(1ngaann型累乘法:na=1nnaa·21nnaa…12aa·1a例2.已知数列{na}满足naann1(n∈N+),1a=1,求na.[解]na=1nnaa·21nnaa…12aa·1a=(n-1)·(n-2)…1·1=(n-1)!∴na=(n-1)!(n∈N+)4.1na=pna+)(nf型(p为常数)方法:变形得11nnpa=nnpa+1)(npnf,则{nnpa}可用累加法求出,由此求na.例4.已知{na}满足1a=2,1na=2na+12n.求na.[解]112nna=nna2+1∴{nna2}为等差数列.nna2=nna121∴na=n·n25.2na=p1na+qna型(p、q为常数)特征根法:qpxx2(1)21xx时,na=1C·nx1+2C·nx2(2)21xx时,na=(1C+2C·n)·nx1例5.数列{na}中,1a=2,2a=3,且2na=1na+1na(n∈N+,n≥2),求na.[解]1na=2na-1na∴122xx∴121xx∴na=(1C+2C·n)·n1=1C+2C·n∴3222121CCCC∴1121CC∴)(1Nnnan7.“已知nS,求na”型方法:na=nS-1nS(注意1a是否符合)例6.设nS为{na}的前n项和,nS=23(na-1),求na(n∈N+)[解]∵nS=23(na-1)(n∈N+)∴当n=1时,1a=23(1a-1)∴1a=3当n≥2时,na=nS-1nS=23(na-1)-23(1na-1)∴na=31na∴na=n3(n∈N+)6.1na=DCaBAann型(A、B、C、D为常数)特征根法:x=DCxBAx(1)21xx时,21xaxann=C·2111xaxann(2)21xx时,11xan=Cxan111例6.已知1a=1,1na=22nnaa(n∈N+),求na.[解]x=22xx∴021xx∴na1=11na+C∵1a=1,2a=32,∴代入,得C=21∴na1为首项为1,d=21的等差数列.∴na1=21n∴na=12n(n∈N+)8.“已知na,1na,nS的关系,求na”型方法:构造与转化的方法.例8.已知{na}的前n项和为nS,且na+2nS(1nS-1na-na)=0(n≥2),1a=21,求na.[解]依题意,得nS-1nS+2nS·1nS=0∴nS1-11nS=2∴nS1=2+2(n-1)=2n∴nS=n21,1nS=)1(21n∴na=nS-1nS=-2×n21×)1(21n=)1(21nn(2n)∴na=)2,()1(21)1(21nNnnnn