中考数学复习专题:折叠问题

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第1页共50页2012年全国中考数学试题分类解析汇编(159套63专题)专题31:折叠问题一、选择题1.(2012广东梅州3分)如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别是边AB、AC上,将△ABC沿着DE折叠压平,A与A′重合,若∠A=75°,则∠1+∠2=【】A.150°B.210°C.105°D.75°【答案】A。【考点】翻折变换(折叠问题),三角形内角和定理。【分析】∵△A′DE是△ABC翻折变换而成,∴∠AED=∠A′ED,∠ADE=∠A′DE,∠A=∠A′=75°。∴∠AED+∠ADE=∠A′ED+∠A′DE=180°﹣75°=105°,∴∠1+∠2=360°﹣2×105°=150°。故选A。2.(2012江苏南京2分)如图,菱形纸片ABCD中,∠A=600,将纸片折叠,点A、D分别落在A’、D’处,且A’D’经过B,EF为折痕,当D’FCD时,CFFD的值为【】A.312B.36C.2316D.318【答案】A。第2页共50页【考点】翻折变换(折叠问题),菱形的性质,平行的性质,折叠的性质,锐角三角函数定义,特殊角的三角函数值。【分析】延长DC与A′D′,交于点M,∵在菱形纸片ABCD中,∠A=60°,∴∠DCB=∠A=60°,AB∥CD。∴∠D=180°-∠A=120°。根据折叠的性质,可得∠A′D′F=∠D=120°,∴∠FD′M=180°-∠A′D′F=60°。∵D′F⊥CD,∴∠D′FM=90°,∠M=90°-∠FD′M=30°。∵∠BCM=180°-∠BCD=120°,∴∠CBM=180°-∠BCM-∠M=30°。∴∠CBM=∠M。∴BC=CM。设CF=x,D′F=DF=y,则BC=CM=CD=CF+DF=x+y。∴FM=CM+CF=2x+y,在Rt△D′FM中,tan∠M=tan30°=DFy3FM2xy3,∴3-1xy2。∴CFx3-1FDy2。故选A。3.(2012江苏连云港3分)小明在学习“锐角三角函数”中发现,将如图所示的矩形纸片ABCD沿过点B的直线折叠,使点A落在BC上的点E处,还原后,再沿过点E的直线折叠,使点A落在BC上的点F处,这样就可以求出67.5°角的正切值是【】A.3+1B.2+1C.2.5D.5【答案】B。【考点】翻折变换(折叠问题),折叠的性质,矩形的性质,等腰三角形的性质,三角形内角和定理,锐角三角函数定义,勾股定理。【分析】∵将如图所示的矩形纸片ABCD沿过点B的直线折叠,使点A落在BC上的点E处,第3页共50页∴AB=BE,∠AEB=∠EAB=45°,∵还原后,再沿过点E的直线折叠,使点A落在BC上的点F处,∴AE=EF,∠EAF=∠EFA=0452=22.5°。∴∠FAB=67.5°。设AB=x,则AE=EF=2x,∴an67.5°=tan∠FAB=tFB2x+x21ABx。故选B。4.(2012广东河源3分)如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别在边AB、AC上,将△ABC沿着DE折叠压平,A与A′重合.若∠A=75º,则∠1+∠2=【】A.150ºB.210ºC.105ºD.75º【答案】A。【考点】折叠的性质,平角的定义,多边形内角和定理。【分析】根据折叠对称的性质,∠A′=∠A=75º。根据平角的定义和多边形内角和定理,得∠1+∠2=1800-∠ADA′+1800-∠AEA′=3600-(∠ADA′+∠AEA′)=∠A′+∠A=1500。故选A。5.(2012福建南平4分)如图,正方形纸片ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别和AE、AF折叠,点B、D恰好都将在点G处,已知BE=1,则EF的长为【】第4页共50页A.32B.52C.94D.3【答案】B。【考点】翻折变换(折叠问题),正方形的性质,折叠的性质,勾股定理。【分析】∵正方形纸片ABCD的边长为3,∴∠C=90°,BC=CD=3。根据折叠的性质得:EG=BE=1,GF=DF。设DF=x,则EF=EG+GF=1+x,FC=DC-DF=3-x,EC=BC-BE=3-1=2。在Rt△EFC中,EF2=EC2+FC2,即(x+1)2=22+(3-x)2,解得:3x2。∴DF=32,EF=1+35=22。故选B。6.(2012湖北武汉3分)如图,矩形ABCD中,点E在边AB上,将矩形ABCD沿直线DE折叠,点A恰好落在边BC的点F处.若AE=5,BF=3,则CD的长是【】A.7B.8C.9D.10【答案】C。【考点】折叠的性质,矩形的性质,勾股定理。【分析】根据折叠的性质,EF=AE=5;根据矩形的性质,∠B=900。在Rt△BEF中,∠B=900,EF=5,BF=3,∴根据勾股定理,得2222BEEFBF534。∴CD=AB=AE+BE=5+4=9。故选C。7.(2012湖北黄石3分)如图所示,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿EF对折,使得点C与点A重合,则AF长为【】第5页共50页A.25cm8B.25cm4C.25cm2D.8cm【答案】B。【考点】翻折变换(折叠问题),折叠对称的性质,矩形的性质,勾股定理。【分析】设AF=xcm,则DF=(8-x)cm,∵矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿EF对折,使得点C与点A重合,∴DF=D′F,在Rt△AD′F中,∵AF2=AD′2+D′F2,即x2=62+(8-x)2,解得:x=25cm4。故选B。8.(2012湖北荆门3分)如图,已知正方形ABCD的对角线长为2,将正方形ABCD沿直线EF折叠,则图中阴影部分的周长为【】A.8B.4C.8D.6【答案】C。【考点】翻折变换(折叠问题),折叠的对称性质,正方形的性质,勾股定理。【分析】如图,∵正方形ABCD的对角线长为22,即BD=22,∠A=90°,AB=AD,∠ABD=45°,∴AB=BD•cos∠ABD=BD•cos45°=222=22。∴AB=BC=CD=AD=2。由折叠的性质:A′M=AM,D′N=DN,A′D′=AD,∴图中阴影部分的周长为A′M+BM+BC+CN+D′N+A′D′=AM+BM+BC+CN+DN+AD=AB+BC+CD+AD=2+2+2+2=8。故选C。第6页共50页9.(2012四川内江3分)如图,在矩形ABCD中,AB=10,BC=5点E、F分别在AB、CD上,将矩形ABCD沿EF折叠,使点A、D分别落在矩形ABCD外部的点A1、D1处,则阴影部分图形的周长为【】A.15B.20C.25D.30【答案】D。【考点】翻折变换(折叠问题),矩形和折叠的性质。【分析】根据矩形和折叠的性质,得A1E=AE,A1D1=AD,D1F=DF,则阴影部分的周长即为矩形的周长,为2(10+5)=30。故选D。10.(2012四川资阳3分)如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=23,则四边形MABN的面积是【】A.63B.123C.183D.243【答案】C。【考点】翻折变换(折叠问题),折叠对称的性质,相似三角形的判定和性质,【分析】连接CD,交MN于E,∵将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,∴MN⊥CD,且CE=DE。∴CD=2CE。∵MN∥AB,∴CD⊥AB。∴△CMN∽△CAB。∴2CMNCABSCE1SCD4。第7页共50页∵在△CMN中,∠C=90°,MC=6,NC=23,∴CMN11SCMCN6236322∴CABCMNS4S463243。∴CABCMNMABNSSS24363183四形边。故选C。11.(2012贵州黔东南4分)如图,矩形ABCD边AD沿拆痕AE折叠,使点D落在BC上的F处,已知AB=6,△ABF的面积是24,则FC等于【】A.1B.2C.3D.4【答案】B。【考点】翻折变换(折叠问题),折叠的性质,矩形的性质,勾股定理。【分析】由四边形ABCD是矩形与AB=6,△ABF的面积是24,易求得BF的长,然后由勾股定理,求得AF的长,根据折叠的性质,即可求得AD,BC的长,从而求得答案:∵四边形ABCD是矩形,∴∠B=90°,AD=BC。∵AB=6,∴S△ABF=12AB•BF=12×6×BF=24。∴BF=8。∴2222AFABBF6810。由折叠的性质:AD=AF=10,∴BC=AD=10。∴FC=BC﹣BF=10﹣8=2。故选B。12.(2012贵州遵义3分)如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于F点,若CF=1,FD=2,则BC的长为【】A.32B.26C.25D.23【答案】B。【考点】翻折变换(折叠问题),矩形的性质和判定,折叠对称的性质,全等三角形的判定第8页共50页和性质,勾股定理。【分析】过点E作EM⊥BC于M,交BF于N。∵四边形ABCD是矩形,∴∠A=∠ABC=90°,AD=BC,∵∠EMB=90°,∴四边形ABME是矩形。∴AE=BM,由折叠的性质得:AE=GE,∠EGN=∠A=90°,∴EG=BM。∵∠ENG=∠BNM,∴△ENG≌△BNM(AAS)。∴NG=NM。∵E是AD的中点,CM=DE,∴AE=ED=BM=CM。∵EM∥CD,∴BN:NF=BM:CM。∴BN=NF。∴NM=12CF=12。∴NG=12。∵BG=AB=CD=CF+DF=3,∴BN=BG﹣NG=3﹣1522。∴BF=2BN=5∴2222BCBFCF5126。故选B。13.(2012山东泰安3分)如图,将矩形纸片ABCD沿EF折叠,使点B与CD的中点重合,若AB=2,BC=3,则△FCB′与△B′DG的面积之比为【】A.9:4B.3:2C.4:3D.16:9【答案】D。【考点】翻折变换(折叠问题),折叠对称的性质,勾股定理,相似三角形的判定和性质。【分析】设BF=x,则由BC=3得:CF=3﹣x,由折叠对称的性质得:B′F=x。∵点B′为CD的中点,AB=DC=2,∴B′C=1。在Rt△B′CF中,B′F2=B′C2+CF2,即22x1(3x),解得:5x3,即可得CF=54333。∵∠DB′G=∠DGB′=90°,∠DB′G+∠CB′F=90°,∴∠DGB′=∠CB′F。∴Rt△DB′G∽Rt△CFB′。根据面积比等于相似比的平方可得:22PCBBDGSFC416()SBD39。故选D。14.(2012山东潍坊3分)已知矩形ABCD中,AB=1,在BC上取一点E,沿AE将ΔABE向第9页共50页上折叠,使B点落在AD上的F点,若四边形EFDC与矩形ABCD相似,则AD=【】.A.512B.5+12C.3D.2【答案】B。【考点】翻折变换(折叠问题),折叠的性质,矩形的性质,正方形的判定和性质,相似多边形的性质。【分析】∵矩形ABCD中,AF由AB折叠而得,∴ABEF是正方形。又∵AB=1,∴AF=AB=EF=1。设AD=x,则FD=x-1。∵四边形EFDC与矩形ABCD相似,∴EFADFDAB,即1xx11。解得115?x=2,215x=2(负值舍去)。经检验115x2是原方程的解。故选B。15.(2012广西河池3分)如图,在矩形ABCD中,AD>AB,将矩形ABCD折叠,使点C与点A重合,折痕为MN,连结CN.若△CDN的面积与△CMN的面积比为1︰4,则MNBM的值为【】A.2B.4C.25D.26【答案】D。【考点】翻折变换(折叠问题),折叠的性质,矩形、菱形的判定和性质,勾股定理。【分析】过点N作NG⊥BC于G,由四边形ABCD是矩形,易得四边形CDNG是矩形,又由折叠的性质,可得四边形AMCN是菱形,由△CDN的面积与△CMN的面积比为1:4,根据等高三角形的面积比等于对应底的比,可得DN:C

1 / 50
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功