题目1证明题一般。使,内至少存在一点上正值,连续,则在在设bbdxxfdxxfdxxfbabaxfaa)(21)()(),(],[)(解答_从而原式成立。又即使在一点由根的存在性定理,存时,由于证:令aaaaaaaxa)(2)()()()()()()(0)F(b)(a,0)()(0)()(0)(],[)()()(dxxfdxxfdxxfdxxfdxxfdttfdttfdttfdttfbFdttfaFxfbaxdttfdttfxFbbbbbbbxQ题目2证明题一般。证明且上可导在设2)(2)(:,0)(,)(,],[)(abMdxxfafMxfbaxfba解答_。有由定积分的比较定理又则微分中值定理上满足在由假设可知证明2)(2)()(,)()(),(M,(x)fx)(a,))(()()()(,],[)(),(,:abMdxaxMdxxfaxMxfbaxaxfafxfxfxaxfbaxbaba题目16证明题。证明:上连续,,在设aadxxafxfdxxfaaxf020)]2()([)()0(]2,0[)(解答_。,则令由于aaaaaaaadxxafxfdttafdxxfdxxfdtdxtaxdxxfdxxfdxxf000202020)]2()([)2()()(2)()()(题目5证明题。;为正整数,证明:设sin)2(cos)1(22kxdxkxdxk解答_。。)02()02(]2sin4121[22cos1sin)2()02()02(]2sin4121[22cos1cos)1(22kxkxdxkxkxdxkxkxdxkxkxdx题目18证明题一般。试证且上有一阶连续导数在设1)]([:.1)0()1(.]1,0[)(210dxxfffxf解答_。证明11)]0()1([2101)(2)(2)]([1)(2)]([01)(2)]([]1)([:1010102222ffxfdxdxxfdxxfxfxfxfxfxf题目3证明题。则上连续,在区间若函数])([)()(],[)(babadxxabafabdxxfbaxf解答_。时时且则作代换101010])([1])([1)]()([)(01)(,)(dxxabafabdttabafabdtabtabafdxxftaxtbxdtabdxtabaxba题目21证明题一般。证明:上连续在设函数2020)cos(41)cos(,]1,0[)(dxxfdxxfxf解答_。得证则令在后一积分中为周期的函数是以显然证2020202020202020022220020)cos(41)cos()cos(4])cos()cos([2)cos()cos()cos())cos(()cos(,])cos()cos([2)cos(2)cos()cos(:dxxfdxxfdxxfdxxfdxxfdxxfdxxfdttftdtfdxxftxdxxfdxxfdxxfdxxfxf题目22证明题一般。,则连续,且在若函数0)()()()(xfdttfxfRxfxa解答_。已知常数考虑函数有且可导在连续在RxxfcceafdttfafceexfccxpexfxfexfexfxpRxexfxpxfxfxfdttfxfRxRxfRxfxaaxxxxxxxa0)(00)(0)()(f(x))()()(0)]()([)()()(.)()(0)()()())(()()()(1题目23证明题一般。证明:为周期的连续函数,是以设)()2()()(sin)(020dxxfxdxxfxxxf解答_。,则令证明:由于000200022020)()2()()sin()()(sin)()(sin)()sin()(])[(sin()()(sin)()(sin)()(sin)()(sindxxfxdxxfxxdxxfxxdxxfxxdxxfxxdxxfxxdttfttxtdttfttdxxfxxdxxfxx题目24证明题一般成立。都有不等式对于任何试证明上连续且单调递减在设100)()(],1,0[:,]1,0[)(dxxfqdxxfqxfq解答_。故单调递减又即由于从而则令10100101010100)()()()()()()(,)(,1)()()(,,dttfqdtqtfqdxxfdttfdtqtftfqtfxftqtqdtqtfqqdtqtfdxxfqdtdxqtxqq题目25证明题一般。证明且上单调增加在设2)()()()()()(:.0)(.],[)(bfafabdxxfafabxfbaxfba解答_。有并相加分别代入上式将故又因之间与在点处的展式为在时由假设证明)(2)()()()(4))](()([2)(2)()()(2)]()([)(2)()()(2)()(,,,))(()()(.0)()xt())((!21))(()()()(].,[)()()()()(].,[:2abbfafdxxfdxxfabafbfdxxfxdxxfbadxxfdxafbfxfxxfbaxfafbfatbtxtxfxftffxtfxtxfxftfxtfbatafabdxxfafxfaxbaxbababababababa题目26证明题一般。上单调增在证明:,,上连续且单调递增。,在设函数.],[)()()()()(1)(][)(baxFafaFbxadttfaxxFbaxfxa解答_上单调增。在,,从而,故满足且单调增上连续,则在从而连续在点时,当,由积分中值定理内的每个证明:对],[)(b)x(a0(x)Ff(x))f(xa.f(x)bxa)()()])(([)(1)()()(1)()(],[)(.)()()()(lim)(limaaxx)(a)(a)-)(x(1)(1)(],[22axaxbaxFaxfxfaxfaxaxxfdttfaxaxxfxFbaxFaxFaFaffxFffaxdttfaxxFxbaxaxaQ题目27证明题一般。证明上二阶可导且在设)2()()(:,0)(],[)(bafabdxxfxfbaxfba解答_。由题设知之间与介于有处展开在将)2()()2)(2(21)2()()()2)(2(')2()(0)(.)2bax()2)((!21)2)(2(')2()(,2)(),(212bafababbaxbafbafabdxxfbaxbafbafxffbaxfbaxbafbafxfbaxfbaxba题目28证明题一般。内满足在,证明函数可导,且上连续,在在设0)(),()()(0)(],[],[)(xFbadtaxtfxFxfbabaxfxa解答_。又内递减在,故时,由已知b)(a,0)(F0a-x)f()f(b)(a,x,),()(0)(),(.)()()(][a,)()()()()()()()()()(22xxxxabaxfxfbaxaxfxfxaxfaxxfaxaxdttfxfaxxFxa题目29证明题一般。,则,使同时至少存在一点,上连续,且对于一切在试证:如果0)(0)f(b][a,0)(],[],[)(badxxfxfbaxbaxf解答_。于是时,有,当则存在,点连续,且在由证明0)(0)(2)()(0f(x)),-(x0b][a,0)()(:ba-badxxffdxfdxxffxf题目30证明题一般。试证)()(acbcbadxxfdxxcf解答_。时时且则令acbcbcacbcacbadxxfdttfdttfdxxcfbctbxactaxdtdxtcxxct)()())(()(,,,题目31证明题一般。,使内至少存在一点试证在上可微,且满足等式:在设函数)f(-)(f)1,0(0)(2)1(]1,0[)(210dxxxffxf解答_。即有上用罗尔定理在对函数则令即成立使有则由积分中值定理由于)1,0()f(-)(f)1,0(0,)()((0,1),1)(,0)(,]1,[)();1()(),()(0)()1(,0)(212)1(],21,0[,0)(2)1(11111111210ffFxFFFxxfxFffffdxxxff题目32证明题一般。证明都有上的连续函数并且对于每一个在上连续在设b)x(a0)(:0)()().(],[,],[)(xfdxxfxgxgbabaxfba解答_。这与题设矛盾故且其中如下构造连续函数从而有内即在区间时当存在故对连续处在由于不妨设使设有若不然证明bxa0)(0)(2)()()()()(0)(lim)(lim).x-(xx.0)().x-(xx)(]b,(x[]-x,[x0)(:)(02)()(.2)()f(x-f(x),)x,-(x,x-x0..2)(,)(.0)(.0)(),,(,:x-x0x-x)()(000000000000000000000000xfdxxhxfdxxfxhdxxfxgxhxhxhxhaxgxgxfxfxfxfxxfxfxfbaxbaxxxx题目33证明题难。则,,且上有连续导数在设函数dxxfabdxxfxfafxfbaxfbaba2')]([2)()(0)((],[)(解答_。由柯西不等式,有则令dxxfabdxxfxfdxxfabdxxFdxdxxFbFbFdxxFxFdxxfxfxfafxfaxtfdttfxxdttfxFbabababababababaxaxa2'2'2222')]([2)()()]([)()]([))(()()()()(2)()(2)()()()()]([)F(ba)]([)(题目34证明题难。,使存在一个,则在该区间上必上二阶连续可微,其中在设)()(!31)]()([!21)()()(0],[)(03322bafabafabfbaafbbfdxxfbabaxf解答_。于是使连续,于是存在在由于令其中代入上式,并相减,有,,分别将令公式,有处展成二阶在将,,则令)()(!31)]()([!21)()()()()()()()()()(],[)x()()()()()(),(max)(),(minm)()([(!31)]