图象与性质交点情况解析式的确定应用一、定义二次函数的定义:形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数叫做二次函数注意:(1)等号左边是变量y,右边是关于自变量x的整式(3)等式的右边最高次数为2次,可以没有一次项和常数项,但不能没有二次项。(2)a,b,c为常数,且a≠0(4)函数的自变量x的取值范围:任意实数当二次函数表示某个实际问题时,还必须根据题意确定自变量的取值范围.•函数y=ax2+bx+c–其中a、b、c是常数–切记:a≠0–右边一个x的二次多项式(不能是分式或根式)二次函数的特殊形式:当b=0时,y=ax2+c当c=0时,y=ax2+bx当b=0,c=0时,y=ax2知识运用下列函数中,哪些是二次函数?(1)y=3x-1(2)y=3x2(3)y=3x3+2x2(4)y=2x2-2x+1(5)y=x-2+x(6)y=x2-x(1+x)当m取何值时,函数是y=(m+2)x分别是一次函数?反比例函数?知识运用m2-2二次函数?二、图象与性质(一)形如y=ax2(a≠0)的二次函数二次函数开口方向对称轴顶点坐标y=ax2a>0a<0向上向下直线X=0(0,0)(二)形如y=ax2+k(a≠0)的二次函数二次函数开口方向对称轴顶点坐标y=ax2+ka0向上a0向下><直线X=0(0,K)二次函数开口方向对称轴顶点坐标y=a(x-h)2a>0a<0向上直线X=h(h,0)(三)、形如y=a(x-h)2(a≠0)的二次函数(或y轴)(或y轴)(四)形如y=a(x+h)2+k(a≠0)的二次函数二次函数开口方向对称轴顶点坐标y=a(x+h)2+k向上向下a>0a<0直线X=-h(-h,k)图象的平移规律:对于抛物线y=a(x+h)2+k的平移有以下规律:(1)、平移不改变a的值;(2)、h决定图象沿x轴方向左右平移,左+右—(3)、k决定图象沿y轴方向上下平移,上+下—(1)抛物线y=x2的开口向,对称轴是,顶点坐标是,图象过第象限;上Y轴(0,0)一、二32(2)抛物线y=x2+3的开口向,对称轴是,顶点坐标是,是由抛物线y=x2向平移个单位得到的;2121上直线X=0(0,3)上3(3)已知(如图)抛物线y=ax2+k的图象,则a0,k0;若图象过A(0,-2)和B(2,0),则a=,k=;函数关系式是y=。〉〈0.5-20.5x2-2XYABO知识运用(4)抛物线y=2(x–3)2+1的开口向,对称轴,顶点坐标是________(5)若抛物线y=a(x+m)2+n开口向下,顶点在第四象限,则a0,m0,n0。(6)已知二次函数y=-x2+bx-5的图象的顶点在y轴上,则b=___。12上X=3(3,1)〈〈〈01.由y=2x2的图象向左平移两个单位,再向下平移三个单位,得到的图象的函数解析式为________________________2.由函数y=-3(x-1)2+2的图象向右平移4个单位,再向上平移3个单位,得到的图象的函数解析式为_____________________________y=2(x+2)2-3=2x2+8x+5y=-3(x-1-4)2+2+3=-3x2+30x-703.抛物线y=ax2向左平移一个单位,再向下平移8个单位且y=ax2过点(1,2).则平移后的解析式为______________;y=2(x+1)2-84.将抛物线y=x2-6x+4如何移动才能得到y=x2.逆向思考,由y=x2-6x+4=(x-3)2-5知:先向左平移3个单位,再向上平移5个单位.知识运用向上向下大二次函数y=ax2+bx+c(a≠0)的图象和性质1、二次函数y=x2-8x+12图象的开口向,对称轴是,顶点坐标为。直线x=4(4,-4)上2、函数的顶点坐标是,对称轴。开口方向,当x时,y随x的增大而增大当x时,y随x的增大而减小当x时,y有最大值或最小最,最大或最小值是。抛物线与x轴交点坐标为,抛物线与y轴的交点坐标为。知识运用212233yxx归纳知识点:抛物线y=ax2+bx+c的符号问题:(1)a的符号:由抛物线的开口方向确定开口向上a0开口向下a0(2)C的符号:由抛物线与y轴的交点位置确定.交点在x轴上方c0交点在x轴下方c0经过坐标原点c=0(3)a,b的符号:由对称轴的位置确定对称轴在y轴左侧a、b同号对称轴在y轴右侧a、b异号对称轴是y轴b=0(4)b2-4ac的符号:由抛物线与x轴的交点个数确定与x轴有两个交点b2-4ac0与x轴有一个交点b2-4ac=0与x轴无交点b2-4ac0yx02-3小明从右边的二次函数y=ax2+bx+c的图象观察得出下面的五条信息:①a<0;②c=0;③函数的最小值为-3;④当x<0时,y0;⑤当0<x1<x2<2时,y1y2你认为其中正确的个数有()A.2B.3C.4D.5C已知y=ax2+bx+c的图象如图所示,a___0,b____0,c_____0,abc____0b___2a,2a-b_____0,2a+b_______0b2-4ac_____0a+b+c_____0,a-b+c____04a-2b+c_____00-11-2<<<<>>><>>>三、抛物线与一元二次方程的关系y=ax2+bx+c的图象和x轴交点方程ax2+bx+c=0的根b2-4ac函数的图象有两个交点方程有两个不相等的实数根b2-4ac0只有一个交点方程有两个相等的实数根b2-4ac=0没有交点方程没有实数根b2-4ac0xyo..xyoxyo22对于二次函数y=ax+bx+c(a0),当y=0时,函数即可化为一元二次方程ax+bx+c=0,这时方程的根就是抛物线与x轴交点的横坐标.根据下列表格中二次函数y=ax2+bx+c的自变量与函数值的对应值,判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解的范围是()x6.176.186.196.20y=ax2+bx+c-0.03-0.010.020.04A.6.17<X<6.18B.6.18<X<6.19C.-0.01<X<0.02D.6.19<X<6.20B四、解析式的确定2、已知抛物线顶点坐标(h,k),通常设抛物线解析式为_______________3、已知抛物线与x轴的两个交点(x1,0)、(x2,0),通常设解析式为_____________1、已知抛物线上的三点,通常设解析式为________________y=ax2+bx+c(a≠0)y=a(x-h)2+k(a≠0)y=a(x-x1)(x-x2)(a≠0)求抛物线解析式的三种方法练习根据下列条件,求二次函数的解析式。(1)、图象经过(0,0),(1,-2),(2,3)三点;(2)、图象的顶点(2,3),且经过点(3,1);(3)、图象经过(-2,0),(3,0),且最高点的纵坐标是3。五、二次函数的应用例1、某工厂大门是一抛物线型水泥建筑物,如图所示,大门地面宽AB=4m,顶部C离地面高度为4.4m.现有一辆满载货物的汽车欲通过大门,货物顶部距地面2.8m,装货宽度为2.4m.请判断这辆汽车能否顺利通过大门.例2、如图所示,某建筑工地准备利用一面旧墙建一个长方形储料场,新建墙的总长为30米。(1)如图,设长方形的一条边长为x米,则另一条边长为多少米?(2)设长方形的面积为y平方米,写出y与x之间的关系式。(3)若要使长方形的面积为72平方米,x应取多少米?x(4)当x为多少时,长方形的面积最大?某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元。为了扩大销售,商场决定采取适当的降价措施。经调查发现,如果每件衬衫每降价一元,商场平均每天可多售出2件。问每件衬衫降价多少元时,商场平均每天盈利最多?最大盈利为多少?某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示坐标系下经过原点O的一条抛物线,在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面米,入水处距池边的距离为5米,同时,运动员在距水面5米以前,必须完成规定的翻腾动作并调整好入水姿势,否则就会出现失误。(1)求这条抛物线的解析式;(2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为米,问此次跳水会不会失误?并能过计算说明理由?OyABx10m3m跳台支柱已知二次函数的图象与x轴交于A、B两点,与y轴交于C点,顶点为D点.(1)求出抛物线的对称轴和顶点坐标;(2)求出A、B、C的坐标;(3)求△ACDB的面积.542xxyyxBOACD解析式点的坐标线段长面积已知抛物线与x轴交于点A(-1,0)和B(3,0),与y轴交于点C,C在y轴的正半轴上,S△ABC为8.(1)求这个二次函数的解析式;(2)若抛物线的顶点为D,直线CD交x轴于E.则x轴上方的抛物线上是否存在点P,使S△PBE=15?cbxaxy2yAEOBCDx面积线段长点的坐标解析式如图二次函数y=ax2+bx+c的图象经过A、B、C三点,(1)观察图象,写出A、B、C三点的坐标,并求出抛物线解析式,(2)求此抛物线的顶点坐标和对称轴(3)观察图象,当x取何值时,y0?y=0?y0?yxABO-145C课后练习:如图,已知正方形ABCD的边长为4,E是BC上的点,F是CD上的点,且EC=AF,EC=x,ΔAEF的面积为y。(1)求y与x之间的函数关系式和自变量x的取值范围;(2)画出函数的图象。EBCDAF如图,在平面直角坐标系中,O为坐标原点,A点坐标为(-8,0),B点坐标为(2,0),以AB的中点P为圆心,AB为直径作⊙P与y轴的负半轴交于点C.(1)求图象经过A、B、C三点的抛物线的解析式;(2)设M点为(1)中抛物线的顶点,求出顶点M的坐标和直线MC的解析式;(3)判定(2)中的直线MC与⊙P的位置关系,并说明理由.ABC0·Pyx课后训练:某瓜果基地市场部为指导该基地某种蔬菜的生产和销售,对今年这种蔬菜上市后的市场售价和生产成本进行了预测,提供了两方面的信息(如甲乙两图)。其中生产成本六月份最低。甲图的图象是线段,乙图的图象是抛物线。5336售价3416成本月份月份请根据图象提供的信息说明解决下列问题:(1)在三月份出售这种蔬菜,每千克的收益是多少?(2)哪个月出售这种蔬菜,每千克的收益最大?最大收益是多少?3416成本月份月份5336售价