2015秋青岛版数学九上3.4《直线与圆的位置关系》全部

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

.O特点:直线和圆没有公共点,叫做直线和圆相离..O特点:直线和圆惟一的公共点,叫做直线和圆相切.这时的直线叫切线,唯一的公共点叫切点..O特点:直线和圆有两个公共点,叫做直线和圆相交,这时的直线叫做圆的割线1.直线与圆的位置关系(图形特征----用公共点的个数来区分).A.A.B切点我们一起来归纳:小结:判定直线与圆的位置关系的方法有____种:(1)根据定义,由________________的个数来判断;(2)根据性质,由_________________的关系来判断。在实际应用中,常采用第二种方法判定。两直线与圆的公共点圆心到直线的距离d与半径r1、已知圆的直径为13cm,设直线和圆心的距离为d:3)若d=8cm,则直线与圆______,直线与圆有____个公共点.2)若d=6.5cm,则直线与圆______,直线与圆有____个公共点.1)若d=4.5cm,则直线与圆,直线与圆有____个公共点.3)若AB和⊙O相交,则.2、已知⊙O的半径为5cm,圆心O与直线AB的距离为d,根据条件填写d的范围:1)若AB和⊙O相离,则;2)若AB和⊙O相切,则;相交相切相离d5cmd=5cmd5cm小试牛刀0cm≤210例1:在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆与AB有怎样的位置关系?为什么?(1)r=2cm;(2)r=2.4cm(3)r=3cm.BCA43分析:要了解AB与⊙C的位置关系,只要知道圆心C到AB的距离d与r的关系.已知r,只需求出C到AB的距离d。Dd解:过C作CD⊥AB,垂足为D在△ABC中,AB=22BCAC22435根据三角形的面积公式有BCACABCD2121∴)(4.2543cmABBCACCD即圆心C到AB的距离d=2.4cm所以(1)当r=2cm时,有dr,因此⊙C和AB相离。Dd(2)当r=2.4cm时,有d=r,因此⊙C和AB相切。(3)当r=3cm时,有dr,因此,⊙C和AB相交。DDdd1、已知:圆的直径为13cm,如果直线和圆心的距离为以下值时,直线和圆有几个公共点?为什么?(1)6cmA0个;B1个;C2个;答案:C(2)6.5cm答案:B(3)7cm答案:AA0个;B1个;C2个;A0个;B1个;C2个;自我检验2、如图,已知∠BAC=30度,M为AC上一点,且AM=5cm,以M为圆心、r为半径的圆与直线AB有怎样的位置关系?为什么?(1)r=2cm(2)r=4cm(3)r=2.5cmD驶向胜利彼岸开启智慧开启智慧开启智慧小结:1、直线与圆的位置关系:0dr1d=r切点切线2dr交点割线.Oldr┐┐.oldr.Old┐r图形直线与圆的位置关系公共点的个数圆心到直线的距离d与半径r的关系公共点的名称直线名称.ACB..相离相切相交直线与圆的位置关系相交相切相离图形公共点个数公共点名称直线名称圆心到直线距离d与半径r的关系2个交点割线1个切点切线drd=rdr没有lrdOlrdBAOlrdAO图中直线l满足什么条件时是⊙O的切线?Ol方法1:直线与圆有唯一公共点方法2:直线到圆心的距离等于半径注意:实际证明过程中,通常不采用第一种方法;方法2从“量化”的角度说明圆的切线的判定方法。(1)直线l经过半径OA的外端点A;(2)直线l垂直于半径0A.则:直线l与⊙O相切这样我们就得到了切线的判定理.AOl切线的判定定理:过半径的外端并且垂直于半径的直线是圆的切线。对定理的理解:切线必须同时满足两条:①经过半径外端;②垂直于这条半径.AOlOrlA∵OA是半径,l⊥OA于点A∴l是⊙O的切线定理的数学语言表达:1、判断:(1)过半径的外端的直线是圆的切线()(2)与半径垂直的直线是圆的切线()(3)过半径的端点与半径垂直的直线是圆的切线()×××OrlAOrlAOrlA切线的判定方法有三种:•①直线与圆有唯一公共点;•②直线到圆心的距离等于该圆的半径;•③切线的判定定理.即经过半径的外端并且垂直这条半径的直线是圆的切线.判定直线与圆相切有哪些方法?例1如图,已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB。求证:直线AB是⊙O的切线。OBAC分析:由于AB过⊙O上的点C,所以连接OC,只要证明AB⊥OC即可。证明:连结OC(如图)。∵OA=OB,CA=CB,∴AB⊥OC。∵OC是⊙O的半径∴AB是⊙O的切线OABCDE如图:AB为⊙O直径,⊙O过BC中点D,DE⊥AC垂足为E求证:DE是⊙O的切线O例2如图,已知:O为∠BAC平分线上一点,OD⊥AB于D,以O为圆心,OD为半径作⊙O。求证:⊙O与AC相切。OABCED〖例2〗已知:O为∠BAC平分线上一点,OD⊥AB于D,以O为圆心,OD为半径作⊙O。求证:⊙O与AC相切。OABCED证明:过O作OE⊥AC于E。∵AO平分∠BAC,OD⊥AB∴OE=OD∵OD是⊙O的半径∴OE是⊙O的半径OE⊥ACAC是⊙O的切线。1、如图,△ABC中,AB=AC,AO⊥BC于O,OE⊥AC于E,以O为圆心,OE为半径作⊙O.求证:AB是⊙O的切线.FECOBAOBACOABCED例1与例2的证法有何不同?(1)如果已知直线经过圆上一点,则连结这点和圆心,得到辅助半径,再证所作半径与这直线垂直.简记为:有交点,连半径,证垂直.(2)如果已知条件中不知直线与圆是否有公共点,则过圆心作直线的垂线段,再证垂线段长等于半径长.简记为:无交点,作垂直,证相等.2、如图,AB是⊙O的直径,点D在AB的延长线上,BD=OB,点C在⊙O上,∠CAB=30°.求证:DC是⊙O的切线.ABCDO如图,如果直线l是⊙O的切线,切点为A,那么半径OA与直线l是不是一定垂直呢?OAl∵l是⊙O的切线,切点为A∴l⊥OA切线的性质定理:圆的切线垂直于经过切点的半径①过半径外端;②垂直于这条半径.切线①圆的切线;②过切点的半径.切线垂直于半径切线判定定理:切线性质定理:OAl1、如图,⊙O切PB于点B,PB=4,PA=2,则⊙O的半径多少?AOBP注:已知切线、切点,则连接半径,应用切线的性质定理得到垂直关系,从而应用勾股定理计算。•A、B、C是⊙O上的三点,经过点A,点C分别作⊙O的切线,两切线相交于点P,如果∠P=42°,求∠ACB的度数。.PABCOm.PABC'COm2:如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D.求证:AC平分∠DABBACO123D证明:连结OC∵CD是⊙O的切线∴OC⊥CD又∵CD⊥AD∴OC∥AD∴∠1=∠3又∵OA=OC∴∠2=∠3∴∠1=∠2即AC平分∠DAB如图,AB为⊙O的直径,C为⊙O上一点,AD⊥CD,AC平分∠DAB.求证:CD是⊙O的切线变式1变式2如图,AB为⊙O的直径,AC平分∠DAB,CD是⊙O的切线.求证:AD⊥CD321BOACD•3直线EF和⊙O相切,AC为直径,求证:∠FAB=∠D切线的判定方法有三种:•①直线与圆有唯一公共点;•②直线到圆心的距离等于该圆的半径;•③切线的判定定理.即经过半径的外端并且垂直这条半径的直线是圆的切线.判定直线与圆相切有哪些方法?1、知识:切线的判定定理.两个条件缺一不可.2、方法:判定直线与圆相切的三种方法:①直线与圆有唯一公共点;②直线到圆心的距离等于该圆的半径;③切线的判定定理.即经过半径的外端并且垂直这条半径的直线是圆的切线.切线的性质定理的应用例题欣赏83、如图,AB是⊙O的直径,AT=AB,∠ABT=45°。求证:AT是⊙O的切线BOTA巩固练习4、如图⊿ABC内接于⊙O,AB是⊙O的直径,∠CAD=∠ABC。判断直线AD与⊙O的位置关系,并说明理由。ADCBO·在经过圆外一点的切线上,这一点和切点之间的线段的长叫做这点到圆的切线长OPA思考:切线和切线长这两个概念有何区别?·OPAB观察与思考:PA、PB有怎样的数量关系?PO与∠APB又有怎样的关系?∴Rt△AOP≌Rt△BOP·OPAB①PA=PB②PO平分∠APB12连结OA、OB、∵PA、PB与⊙O相切,点A、B是切点∠1=∠2∴OA⊥AP,OB⊥BP∴∠OAP=∠OBP=90°∵OA=OB,OP=OP∴PA=PB切线长定理从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。PA、PB分别切⊙O于A、BPA=PB∠1=∠2·OAB12符号表示切线长定理的基本图形的研究PA、PB是⊙O的两条切线,A、B为切点,直线OP交于⊙O于点D、E,交AB于C。BAPOCED(1)写出图中所有的垂直关系OA⊥PA,OB⊥PB,AB⊥OP(3)写出图中所有的全等三角形△AOP≌△BOP,△AOC≌△BOC,△ACP≌△BCP(4)写出图中相等的圆弧(5)写出图中所有的等腰三角形△ABP,△AOB(6)若PA=4、PD=2,求半径OA(2)写出图中与∠OAC相等的角∠OAC=∠OBC=∠APC=∠BPC。PBAO反思:在解决有关圆的切线长的问题时,往往需要我们构建基本图形。(3)连结圆心和圆外一点(2)连结两切点(1)分别连结圆心和切点切线长定理为证明线段相等,角相等,弧相等,垂直关系提供了理论依据。必须掌握并能灵活应用。典型例题例、已知:P为⊙O外一点,PA、PB为⊙O的切线,A、B为切点,BC是直径。求证:AC∥OPPCAOBD

1 / 50
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功