变压吸附工作基本原理

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

变压吸附(PSA)法基本工作原理2吸附的基本概念和吸附剂一、吸附的定义当气体分子运动到固体表面上时,由于固体表面原子剩余引力的作用,气体中的一些分子便会暂时停留在固体表面上,这些分子在固体表面上的浓度增大,这种现象称为气体分子在固体表面上的吸附。相反,固体表面上被吸附的分子返回气体相的过程称为解吸或脱附。被吸附的气体分子在固体表面上形成的吸附层,称为吸附相。吸附相的密度比一般气体的密度大得多,有可能接近液体密度。当气体是混合物时,由于固体表面对不同气体分子的引力差异,使吸附相的组成与气相组成不同,这种气相与吸附相在密度上和组成上的差别构成了气体吸附分离技术的基础。吸附物质的固体称为吸附剂,被吸附的物质称为吸附质。伴随吸附过程所释放的热量叫吸附热,解吸过程所吸收的热量叫解吸热。气体混合物的吸附热是吸附质的冷凝热和润湿热之和。不同的吸附剂对各种气体分子的吸附热均不相同。按吸附质与吸附剂之间引力场的性质,吸附可分为化学吸附和物理吸附。化学吸附:即吸附过程伴随有化学反应的吸附。在化学吸附中,吸附质分子和吸附剂表面将发生反应生成表面络合物,其吸附热接近化学反应热。化学吸附需要一定的活化能才能进行。通常条件下,化学吸附的吸附或解吸速度都要比物理吸附慢。石灰石吸附氯气,沸石吸附乙烯都是化学吸附。物理吸附:也称范德华(vanderWaais)吸附,它是由吸附质分子和吸附剂表面分子之间的引力所引起的,此力也叫作范德华力。由于固体表面的分子与其内部分子不同,存在剩余的表面自由力场,当气体分子碰到固体表面时,其中一部分就被吸附,并释放出吸附热。在被吸附的分子中,只有当其热运动的动能足以克服吸附剂引力场的位能时才能重新回到气相,所以在与气体接触的固体表面上总是保留着许多被吸附的分子。由于分子间的引力所引起的吸附,其吸附热较低,接近吸附质的汽化热或冷凝热,吸附和解吸速度也都较快。被吸附气体也较容易地从固体表面解吸出来,所以物理吸附是可逆的。分离气体混合物的变压吸附过程系纯物理吸附,在整个过程中没有任何化学反应发生。本工艺为物理吸附。二、吸附剂1.吸附剂的种类工业上常用的吸附剂有:硅胶、活性氧化铝、活性炭、分子筛等,另外还有针对某种组分选择性吸附而研制的吸附材料。气体吸附分离成功与否,很大程度上依赖于吸附剂的性能,因此选择吸附剂是确定吸附操作的首要问题。硅胶是一种坚硬、无定形链状和网状结构的硅酸聚合物颗粒,分子式为SiO2.nH2O,为一种亲水性的极性吸附剂。它是用硫酸处理硅酸钠的水溶液,生成凝胶,并将其水洗除去硫酸钠后经干燥,便得到玻璃状的硅胶,它主要用于干燥、气体混合物及石油组分的分离等。工业上用的硅胶分成粗孔和细孔两种。粗孔硅胶在相对湿度饱和的条件下,吸附量可达吸附剂重量的80%以上,而在低湿度条件下,吸附量大大低于细孔硅胶。活性氧化铝是由铝的水合物加热脱水制成,它的性质取决于最初氢氧化物的结构状态,一般都不是纯粹的Al2O3,而是部分水合无定形的多孔结构物质,其中不仅有无定形的凝胶,还有氢氧化物的晶体。由于它的毛细孔通道表面具有较高的活性,故又称活性氧化铝。它对水有较强的亲和力,是一种对微量水深度干燥用的吸附剂。在一定操作条件下,它的干燥深3度可达露点-70℃以下。活性炭是将木炭、果壳、煤等含碳原料经炭化、活化后制成的。活化方法可分为两大类,即药剂活化法和气体活化法。药剂活化法就是在原料里加入氯化锌、硫化钾等化学药品,在非活性气氛中加热进行炭化和活化。气体活化法是把活性炭原料在非活性气氛中加热,通常在700℃以下除去挥发组分以后,通入水蒸气、二氧化碳、烟道气、空气等,并在700~1200℃温度范围内进行反应使其活化。活性炭含有很多毛细孔构造,所以具有优异的吸附能力。因而它用途遍及水处理、脱色、气体吸附等各个方面。沸石分子筛又称合成沸石或分子筛,其化学组成通式为:[M(Ⅰ)M(Ⅱ)]O.Al2O3.nSiO2.mH2O式中M(Ⅰ)和M(Ⅱ)分别为为一价和二价金属离子,多半是钠和钙,n称为沸石的硅铝比,硅主要来自于硅酸钠和硅胶,铝则来自于铝酸钠和Al(HO)3等,它们与氢氧化钠水溶液反应制得的胶体物,经干燥后便成沸石,一般n=2~10,m=0~9。沸石的特点是具有分子筛的作用,它有均匀的孔径,如3A0、4A0、5A0、10A0细孔。有4A0孔径的4A0沸石可吸附甲烷、乙烷,而不吸附三个碳以上的正烷烃。它已广泛用于气体吸附分离、气体和液体干燥以及正异烷烃的分离。碳分子筛实际上也是一种活性炭,它与一般的碳质吸附剂不同之处,在于其微孔孔径均匀地分布在一狭窄的范围内,微孔孔径大小与被分离的气体分子直径相当,微孔的比表面积一般占碳分子筛所有表面积的90%以上。碳分子筛的孔结构主要分布形式为:大孔直径与碳粒的外表面相通,过渡孔从大孔分支出来,微孔又从过渡孔分支出来。在分离过程中,大孔主要起运输通道作用,微孔则起分子筛的作用。以煤为原料制取碳分子筛的方法有炭化法、气体活化法、碳沉积法和浸渍法。其中炭化法最为简单,但要制取高质量的碳分子筛必须综合使用这几种方法。碳分子筛在空气分离制取氮气领域已获得了成功,在其它气体分离方面也有广阔的前景。2.吸附剂的物理性质吸附剂的良好吸附性能是由于它具有密集的细孔构造。与吸附剂细孔有关的物理性能有:a.孔容(VP):吸附剂中微孔的容积称为孔容,通常以单位重量吸附剂中吸附剂微孔的容积来表示(cm3/g).孔容是吸附剂的有效体积,它是用饱和吸附量推算出来的值,也就是吸附剂能容纳吸附质的体积,所以孔容以大为好。吸附剂的孔体积(Vk)不一定等于孔容(VP),吸附剂中的微孔才有吸附作用,所以VP中不包括粗孔。而Vk中包括了所有孔的体积,一般要比VP大。b.比表面积:即单位重量吸附剂所具有的表面积,常用单位是m2/g。吸附剂表面积每克有数百至千余平方米。吸附剂的表面积主要是微孔孔壁的表面,吸附剂外表面是很小的。c.孔径与孔径分布:在吸附剂内,孔的形状极不规则,孔隙大小也各不相同。直径在数埃(A0)至数十埃的孔称为细孔,直径在数百埃以上的孔称为粗孔。细孔愈多,则孔容愈大,比表面也大,有利于吸附质的吸附。粗孔的作用是提供吸附质分子进入吸附剂的通路。粗孔和细孔的关系就象大街和小巷一样,外来分子通过粗孔才能迅速到达吸附剂的深处。所以粗孔也应占有适当的比例。活性炭和硅胶之类的吸附剂中粗孔和细孔是在制造过程中形成的。沸石分子筛在合成时形成直径为数微米的晶体,其中只有均匀的细孔,成型时才形成晶体与晶体之间的粗孔。孔径分布是表示孔径大小与之对应的孔体积的关系。由此来表征吸附剂的孔特性。4d.表观重度(dl):又称视重度。吸附剂颗粒的体积(Vl)由两部分组成:固体骨架的体积(Vg)和孔体积(Vk),即:Vl=Vg+Vk表观重度就是吸附颗粒的本身重量(D)与其所占有的体积(Vl)之比。吸附剂的孔体积(Vk)不一定等于孔容(VP),吸附剂中的微孔才有作用,所以VP中不包括粗孔。而Vk中包括了所有孔的体积,一般要比VP大。e.真实重度(dg):又称真重度或吸附剂固体的重度,即吸附剂颗粒的重量(D)与固体骨架的体积Vg之比。假设吸附颗粒重量以一克为基准,根据表观重度和真实重度的定义则:dl==l/Vl;dg=l/Vg于是吸附剂的孔体积为:Vk=l/dl–l/dgf.堆积重度(db):又称填充重度,即单位体积内所填充的吸附剂重量。此体积中还包括有吸附剂颗粒之间的空隙,堆积重度是计算吸附床容积的重要参数。以上的重度单位常用g/cm3、kg/l、kg/m3表示。g.孔隙率(εk):即吸附剂颗粒内的孔体积与颗粒体积之比。εk=Vk/(Vg+Vk)=(dg-dl)/dg=1-dl/dgh.空隙率(ε):即吸附颗粒之间的空隙与整个吸附剂堆积体积之比。ε=(Vb-Vl)/Vb=(dl-db)/dl=1-db/dl表2-1列出了一些吸附剂的物理性质:表2-1吸附剂的物理性质吸附剂名称硅胶活性氧化铝活性炭沸石分子筛真实重度g/cm32.1~2.33.0~3.31.9~2.22.0~2.5表观重度g/cm30.7~1.30.8~1.90.7~1.00.9~1.3堆积重度g/cm30.45~0.850.49~1.000.35~0.550.6~0.75空隙率0.40~0.500.40~0.500.33~0.550.30~0.40比表面积m2/g300~80095~350500~1300400~750孔容cm3/g0.3~1.20.3~0.80.5~1.40.4~0.6平均孔径A010~14040~12020~50三、吸附平衡和等温吸附线—吸附的热力学基础吸附刚开始时吸附剂存在大量的活性表面,被吸附的吸附质分子数大大超过离开表面的分子数。随着吸附的进行,吸附剂表面逐渐被吸附质分子遮盖,吸附剂表面再吸附的能力下降,直到吸附速度等于解吸速度时,就表示吸附达到了平衡。在密闭的容器内,吸附剂与吸附质充分接触,呈平衡时为静态吸附平衡。含有一定量吸附质的惰性气流通过吸附剂固定床,吸附质在流动状态下被吸附剂吸附,最后达到的平衡为动态平衡。5为了解释吸附过程的实质,曾提出了各式各样的理论。在这些理论中,迄今没有一个能够说明所有的吸附现象。个别理论虽然能够完善地说明吸附现象的一个方面,但是却不能用来解释这一现象的其它方面。这些理论适用与否,是取决于吸附质和吸附剂的性质,以及吸附的具体条件。不管对吸附机理的各种解释如何,他们都认为吸附剂对吸附质的吸附数量与被吸附气体的压力及吸附过程的温度有关,即:q=f(P,T)式中:q—单位重量(或体积)吸附剂所吸附的物质量(吸附量);P—吸附组分在气相中平衡时的分压;T—吸附过程的温度。在此函数中,当温度(T)一定时,称为等温吸附线;当压力(P)一定时,称为等压吸附线;而当吸附量一定时,称为等量吸附线。最常用的就是等温吸附线。布隆耐尔(Bronaner)曾将物理吸附等温吸附线分为五种类型,如图2-1所示。图中纵坐标为吸附量q,横坐标为吸附质分压P(当平衡温度在吸附质临界温度以下时,通常与该温度下饱和蒸汽压力P0的比值P/P0表示).五种类型的吸附等温线其形状的差异是由于吸附剂和吸附质分子之间作用力不同造成的。类型Ⅰ是平缓地趋近饱和的朗格谬而型等温吸附线。这种吸附相当于在吸附剂表面上只形成单分子层吸附。类型Ⅱ是最普通的物理吸附,能形成多分子层。类型Ⅲ比较少见,它的特点是吸附热与被吸附组分的液化热大致相等。第Ⅳ、Ⅴ种认为是由于毛细管凝结现象所致。物理吸附等温曲线不只限于这五种。例如,有的物理吸附其等温吸附线是阶梯状的,并且等温吸附线常常与解吸曲线不一致,还常有滞后的拖尾现象。表达等温吸附线的数学式,称为等温吸附方程。由于各学者针对不同的吸附平衡现象,采用不同的假设和模型,因而推导出各种等温吸附方程。现将几种常用的等温吸附方程简单介绍如下:1.亨利(Henry)方程通常都知道,一定温度下气体在液体中的溶解度与气体的分压成正比,这就是亨利定律。而在吸附过程中,亦存在这种现象,即在吸附过程中吸附量与压力成正比。和气体在溶液中的溶解是相同的,故称为亨利吸附。其方程为:q=kh.c式中:q—吸附剂的吸附量;kh—亨利系数;6c—吸附质在气体中的浓度。对于压力很低的气相吸附,多数情况下,能服从此定律,而且只限于吸附量占形成单分子层吸附量的10%以下,即吸附面最多只有10%大表面被吸附物质所覆盖,才能适用这个方程。2.朗格谬尔(Langmair)方程假设在等温下,对于均匀的吸附表面,吸附质分子之间没有相互作用力,形成单分子层吸附,由此推导出的等温方程称为朗格谬尔方程。在吸附速率和解吸速率相等时为:q/qm=kl.p/(1+kl.p)式中:qm—吸附剂的最大吸附容量;p—吸附质在气体混合物中的分压;kl—朗格谬尔常数。从上式中可知,当吸附质在气体中的分压很低时,则:q=qm.kl.p即成为亨利方程,qm.kl相当于亨利系数kh。如果吸附剂的吸附能力很强,吸附质的分压较高,上式又为q=qm。相当于吸附剂的表面全部吸附了吸附质,成为饱和吸附状态,等温吸附线趋于一条渐进线,吸附量和分

1 / 15
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功