初二期末几何压轴题答案详解

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

每期5次课,共4期,每期内容不同,学员可以灵活选报想上的期数或者4期全报满分冲刺班(适合平时考试135+分段学生)上午8:30-10:20,高分冲刺班(适合平时考试110-135分段学生)上午10:35-12:25每节课50分钟,每次2节课费用:750元/期,每班限6人,报名电话:15823612254张老师地址:鲁能星城九街区10栋一单元18-3•第一期1.31——2.4日•几何复习提升专场三角形综合一•三角形中的特殊点线角平分线,中点中线性质及对应辅助线作法•三角形综合二等腰三角形,等边三角形,直角三角形•几何三大变换对称平移旋转•中位线定理三角形的中位线•平行四边形初步平行四边形的性质与判定•第二期2.6-2.10•代数复习提升专场实数与二次根式•方程与不等式二元一次方程与不等式组及其应用•一次函数代数应用综合一次函数与二元一次方程租不等式综合及其应用•一次函数几何综合一次函数的图像性质与几何图形综合•因式分解与分式代数式恒等变形,分式方程及其应用•第四期2.24-2.28•代数预习专场反比例函数基础反比例函数的定义几基本性质•反比例函数进阶反比例函数综合难题,中考压轴题•一元二次方程的解法一元二次方程的几种一般解法•一元二次方程判别式及根与系数的关系根与判别式根与系数关系•一元二次方程应用题一元二次方程的应用题解题策略•第三期•2.10——2.14日•几何预习专场矩形,菱形矩形;菱形的基本性质与中考题型方法•正方形一正方形的基本性质及常考题型•正方形二正方形进阶,中考压轴题解题方法体验与归纳•梯形梯形的基本性质及常考题型•几何动点动态问题几何图形中的点线面运动1.如图,在直角梯形ABCD中,AD∥BC,∠A=90º,AB=AD,DE⊥CD交AB于E,DF平分∠CDE交BC于F,连接EF.证明:CF=EFAEBFCD解:过D作DG⊥BC于G.由已知可得四边形ABGD为正方形,∵DE⊥DC∴∠ADE+∠EDG=90°=∠GDC+∠EDG,∴∠ADE=∠GDC.又∵∠A=∠DGC且AD=GD,∴△ADE≌△GDC,∴DE=DC且AE=GC.在△EDF和△CDF中∠EDF=∠CDF,DE=DC,DF为公共边,∴△EDF≌△CDF,∴EF=CF2.已知:在⊿ABC中,∠A=900,AB=AC,D是AC的中点,AE⊥BD,AE延长线交BC于F,求证:∠ADB=∠FDC。证明:过点C作CG⊥CA交AF延长线于G∴∠G+∠GAC=90°…………①又∵AE⊥BD∴∠BDA+∠GAC=90°…………②综合①②,∠G=∠BDA在△BDA与△AGC中,∵∠G=∠BDA∠BAD=∠ACG=90°BA=CA∴△BDA≌△AGC∴DA=GC∵D是AC中点,∴DA=CD∴GC=CD由∠1=45°,∠ACG=90°,故∠2=45°=∠1在△GCF与△DCF中,∵GC=CD∠2=45°=∠1CF=CF∴△GCF≌△DCF∴∠G=∠FDC,又∠G=∠BDA∴∠ADB=∠FDCABCDEGFKOH3.如图,梯形ABCD中,AD∥BC,CD⊥BC,BC=CD,O是BD的中点,E是CD延长线上一点,作OF⊥OE交DA的延长线于F,OE交AD于H,OF交AB于G,FO的延长线交CD于K,求证:OE=OF提示:由条件知△BCD为等腰Rt△,连接OC,可证△OCK≌△ODH(AAS),得OK=OH,再证△FOH≌△EOK(AAS),得OE=OF4.如图,在正方形ABCD的边BC上任取一点M,过点C作CN⊥DM交AB于N,设正方形对角线交点为O,试确定OM与ON之间的关系,并说明理由.解:∵四边形ABCD是正方形,∴DC=BC,∠DCM=∠NBC=90°,又∵CN⊥DM交AB于N,∴∠NCM+∠CMD=90°,而∠CMD+∠CDM=90°,∴∠NCM=∠CDM,∴△DCM≌△CBN,∴CM=BN,再根据四边形ABCD是正方形可以得到OC=OB,∠OCM=∠OBN=45°,∴△OCM≌△OBN.∴OM=ON,∠COM=∠BON,而∠COM+∠MOB=90°,∴∠BON+∠MOB=90°.∴∠MON=90°.∴OM与ON之间的关系是OM=ON;OM⊥ON.5.如图,正方形CGEF的对角线CE在正方形ABCD的边BC的延长线上(CG>BC),M是线段AE的中点,DM的延长线交CE于N.探究:线段MD、MF的关系,并加以证明.证明:根据题意,知AD∥BC.∴∠EAD=∠AEN(内错角相等),∵∠DMA=∠NME(对顶角相等),又∵M是线段AE的中点,∴AM=ME.∴△ADM≌△ENM(ASA).∴AD=NE,DM=MN.(对应边相等).连接线段DF,线段FN,线段CE是正方形的对角线,∠DCF=∠NEF=45°,根据上题可知线段AD=NE,又∵四边形CGEF是正方形,∴线段FC等于FE.∴△DCF≌△NEF(SAS).∴线段FD=FN.∴△FDN是等腰三角形.∴线段MD⊥线段MF.6.如图,△ABC是等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角∠NDM,角的两边分别交AB、AC边于M、N两点,连接MN.试探究BM、MN、CN之间的数量关系,并加以证明.证明:BM+CN=NM延长AC至E,使CE=BM,连接DE,∵△BDC是顶角∠BDC=120°的等腰三角形,△ABC是等边三角形,∴∠BCD=30°,∴∠ABD=∠ACD=90°,∵DB=DC,CE=BM,∴△DCE≌△BMD,∵∠MDN=∠NDE=60°∴DM=DE(上面已经全等)∴DN=ND(公共边)∴△DMN≌△DEN∴BM+CN=NM.7.如图,ABCD为正方形,E为BC边上一点,且AE=DE,AE与对角线BD交于点F,连接CF,交ED于点G.判断CF与ED的位置关系,并说明理由.解:垂直.理由:∵四边形ABCD为正方形,∴∠ABD=∠CBD,AB=BC,∵BF=BF,∴△ABF≌△CBF,∴∠BAF=∠BCF,∵在RT△ABE和△DCE中,AE=DE,AB=DC,∴RT△ABE≌△DCE,∴∠BAE=∠CDE,∴∠BCF=∠CDE,∵∠CDE+∠DEC=90°,∴∠BCF+∠DEC=90°,∴DE⊥CF.8.如图,梯形ABCD中,AD∥BC,∠DCB=45°,BD⊥CD.过点C作CE⊥AB于E,交对角线BD于F,点G为BC中点,连接EG、AF.求证:CF=AB+AF.证明:在线段CF上截取CH=BA,连接DH,∵BD⊥CD,BE⊥CE,∴∠EBF+∠EFB=90°,∠DFC+∠DCF=90°,∵∠EFB=∠DFC,∴∠EBF=∠DCF,∵DB=CD,BA=CH,∴△ABD≌△HCD,∴AD=DH,∠ADB=∠HDC,∵AD∥BC,∴∠ADB=∠DBC=45°,∴∠HDC=45°,∴∠HDB=∠BDC—∠HDC=45°,∴∠ADB=∠HDB,∵AD=HD,DF=DF,∴△ADF≌△HDF,∴AF=HF,∴CF=CH+HF=AB+AF,∴CF=AB+AF.9.如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°.E为AD延长线上的一点,且CE=CA,求证:AD+CD=DE;证明:∵AC=BC,∠ACB=90°,∴∠CAB=∠ABC=45°.∵∠CAD=∠CBD=15°,∴∠BAD=∠ABD=30°.∴AD=BD.在DE上截取DM=DC,连接CM,∵AD=BD,AC=BC,DC=DC,∴△ACD≌△BCD.∴∠ACD=∠BCD=45°.∵∠CAD=15°,∴∠EDC=60°.∵DM=DC,∴△CMD是等边三角形.∴∠CDA=∠CME=120°.∵CE=CA,∴∠E=∠CAD.∴△CAD≌△CEM.∴ME=AD.∴DA+DC=ME+MD=DE.即AD+CD=DE.10.如图,在正方形ABCD中,F是CD的中点,E是BC边上的一点,且AF平分∠DAE,求证:AE=EC+CD.证明:∵AF平分∠DAE,∠D=90°,FH⊥AE,∴∠DAF=∠EAF,FH=FD,在△AHF与△ADF中,∵AF为公共边,∠DAF=∠EAF,FH=FD(角平分线上的到角的两边距离相等),∴△AHF≌△ADF(HL).∴AH=AD,HF=DF.又∵DF=FC=FH,FE为公共边,∴△FHE≌△FCE.∴HE=CE.∵AE=AH+HE,AH=AD=CD,HE=CE,∴AE=EC+CD.11.已知梯形ABCD中,AB∥CD,BD⊥AC于E,AD=BC,AC=AB,DF⊥AB于F,AC、DF相交于DF的中点O.求证:AB+CD=2BE.证明:过D作DM∥AC交BA的延长线于M.∵梯形ABCS中,AD=BC,∴BD=AC.又∵CD∥AM,DM∥AC,∴四边形CDMA为平行四边形.∴DM=AC,CD=AM.∵MD∥AC,又AC⊥BD,且AC=BD,∴DM⊥BD,DM=BD,∴△DMB为等腰直角三角形.又∵DF⊥BM,∴DF=BF.∴BM=2DF=2BF∴AM+AB=2BF.∵CD=AM,∴AB+CD=2BF.∵AC=BD=AB,∴在△BEA和△BFD中,△BEA≌△BFD.∴BE=BF.∵AB+CD=2BF,∴AB+CD=2BE.12.已知:如图,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E.求证:AD=DE.证明:(1)∵CF平分∠BCD,∴∠BCF=∠DCF.在△BFC和△DFC中,∴△BFC≌△DFC.∴BF=DF,∴∠FBD=∠FDB.连接BD.∵DF∥AB,∴∠ABD=∠FDB.∴∠ABD=∠FBD.∵AD∥BC,∴∠BDA=∠DBC.∵BC=DC,∴∠DBC=∠BDC.∴∠BDA=∠BDC.又BD是公共边,∴△BAD≌△BED.∴AD=DE.13.如图,在直角梯形ABCD中,AD⊥DC,AB∥DC,AB=BC,AD与BC延长线交于点F,G是DC延长线上一点,AG⊥BC于E.求证:CF=CG;证明:连接AC,∵DC∥AB,AB=BC,∴∠1=∠CAB,∠CAB=∠2,∴∠1=∠2;∵∠ADC=∠AEC=90°,AC=AC,∴△ADC≌△AEC,∴CD=CE;∵∠FDC=∠GEC=90°,∠3=∠4,∴△FDC≌△GEC,∴CF=CG.14.如图,已知P为∠AOB的平分线OP上一点,PC⊥OA于C,PA=PB,求证AO+BO=2CO证明:过点P作PQ⊥OB于Q,则∠PQB=90°∵OP平分∠AOB,且PC⊥OA,PQ⊥OB∴PC=PQ在Rt△POC与Rt△POQ中,∵PC=PQPO=PO∴Rt△POC≌Rt△POQ(HL)∴OC=OQ∴2OC=OC+OQ=OC+OB+BQ在Rt△PCA与Rt△PQB中,∵PC=PQPA=PB∴Rt△PCA≌Rt△PQB(HL)∴CA=QB又2OC=OC+OB+BQ∴2OC=OC+OB+CA=OA+OB15.已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE=AC.求证:BG=FG;证明:∵∠ABC=90°,DE⊥AC于点F,∴∠ABC=∠AFE.∵AC=AE,∠EAF=∠CAB,∴△ABC≌△AFE∴AB=AF.连接AG,∵AG=AG,AB=AF,∴Rt△ABG≌Rt△AFG.∴BG=FG•解:∵△ABE、△ADF是等边三角形•∴FD=AD,BE=AB•∵AD=BC,AB=DC•∴FD=BC,BE=DC•∵∠B=∠D,∠FDA=∠ABE•∴∠CDF=∠EBC•∴△CDF≌△EBC,•∵AF=FD,AE=DC,EF=CF•∴△EAF≌△CDF•∴∠CDF=∠EAF,•∵∠AFC=∠AFE+∠EFD+∠DFC,∠AFE+∠EFD=60°•∴∠AFC-∠DFC=60°•∴∠AFE=∠DFC•∴∠EFC=60°•同理,∠FEC=60°•∵CF=CE•∴△ECF是等边三角形16.如图,在平行四边形ABCD中,分别以AB、AD为边向外作等边△ABE、△ADF,连接CE、CF,求证:①△CDF≌△EBC;②∠CDF=∠EAF;③△ECF是等边△1

1 / 26
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功