ABC┌1.直角三角形有哪些特殊的性质?2.有一个锐角是30°的直角三角形有哪些性质特点?3.有一个锐角是45°的直角三角形有哪些性质特点?问题1为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35m,那么需要准备多长的水管?这个问题可以归结为,在Rt△ABC中,∠C=90°,∠A=30°,BC=35m,求AB的长.ABC思考:你能将实际问题归结为数学问题吗?情境探究根据“在直角三角形中,30°角所对的直角边等于斜边的一半”,即ABC在Rt△ABC中,∠C=90°,∠A=30°,BC=35m,求AB的长..21ABBC斜边的对边A可得AB=2BC=70m,即需要准备70m长的水管。在上面的问题中,如果使出水口的高度为50m,那么需要准备多长的水管?结论:在一个直角三角形中,如果一个锐角等于30°,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于。21ABC50m30mB'C'即在直角三角形中,当一个锐角等于45°时,不管这个直角三角形的大小如何,这个角的对边与斜边的比都等于。22如图,任意画一个Rt△ABC,使∠C=90°,∠A=45°,计算∠A的对边与斜边的比,你能得出什么结论?ABBCABC综上可知,在一个Rt△ABC中,∠C=90°,一般地,当∠A取其他一定度数的锐角时,它的对边与斜边的比是否也是一个固定值?21当∠A=30°时,∠A的对边与斜边的比都等于,是一个固定值;22当∠A=45°时,∠A的对边与斜边的比都等于,也是一个固定值.探究ABCA'B'C'任意画Rt△ABC和Rt△A‘B’C‘,使得∠C=∠C’=90°,∠A=∠A‘=,那么与有什么关系.你能解释一下吗?ABBC''''BACB由于∠C=∠C’=90°,∠A=∠A’=所以Rt△ABC∽Rt△A’B’C’,''''BAABCBBC.''C'B'ABBABC即这就是说,在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,∠A的对边与斜边的比都是一个固定值.探究如图,在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A的正弦(sine),记作sinA,即caAA斜边的对边sin例如,当∠A=30°时,我们有2130sinsinA当∠A=45°时,我们有2245sinsinAABCcab对边斜边在图中∠A的对边记作a∠B的对边记作b∠C的对边记作c正弦注意sinA是一个完整的符号,它表示∠A的正弦,记号里习惯省去角的符号“∠”;sinA没有单位,它表示一个比值,即直角三角形中∠A的对边与斜边的比;sinA不表示“sin”乘以“A”。例1如图,在Rt△ABC中,∠C=90°,求sinA和sinB的值.ABC34例题示范ABC135(1)(2).54sin53sin5.34BCACABABCR12222ABACBABBCAt,因此中,),在解:如图(试着完成图(2)求sinA就是要确定∠A的对边与斜边的比;求sinB就是要确定∠B的对边与斜边的比练习2254AC35B2、在平面直角平面坐标系中,已知点A(3,0)和B(0,-4),则sin∠OAB等于____.3、在Rt△ABC中,∠C=90°,AD是BC边上的中线,AC=2,BC=4,则sin∠DAC=___.4、在Rt△ABC中,∠C=90°,,则sin∠A=___.33ba1、如图,求sinA和sinB的值.5.在Rt△ABC中,∠C=90°,a=1,c=4,则sinA的().A.151115...15434BCDBACB7.如图:在Rt△ABC中,∠C=90°,AB=10,sinB=,BC的长是.536.若sin(65°-∠A)=,则∠A=2220°8O8、如图2:P是平面直角坐标系上的一点,且点P的坐标为(3,4),则sin=P(3,4)54xAy9、如图,在△ABC中,AB=CB=5,sinA=,求△ABC的面积。54BAC5510.在Rt△ABC中,锐角A的对边和斜边同时扩大100倍,sinA的值()A.扩大100倍B.缩小C.不变D.不能确定C1100练一练11.ACB37300则sinA=______.121222231.正弦的定义:3.sinA是∠A的函数.ABC∠A的对边┌斜边斜边∠A的对边sinA=2.Sin30°=sin45°=回味无穷sin60°=4.sinA是线段之间的一个比值,sinA没有单位