.Word文档第一章三角形的证明1.等腰三角形(一)一、教学目标如:1.知识目标:理解作为证明基础的几条公理的容,应用这些公理证明等腰三角形的性质定理;熟悉证明的基本步骤和书写格式。2.能力目标:经历“探索-发现-猜想-证明”的过程,让学生进一步体会证明是探索活动的自然延续和必要发展,发展学生的初步的演绎逻辑推理的能力;3.情感与价值目标:启发引导学生体会探索结论和证明结论,及合情推理与演绎的相互依赖和相互补充的辩证关系;二.教学重、难点重点:探索证明等腰三角形性质定理的思路与方法,掌握证明的基本要求和方法;难点:明确推理证明的基本要求如明确条件和结论,能否用数学语言正确表达等。三、教学过程分析第一环节:回顾旧知导出公理请学生回忆并整理已经学过的8条基本事实。其中证明三角形全等的有以下三条:两边夹角对应相等的两个三角形全等(SAS);两角及其夹边对应相等的两个三角形全等(ASA);三边对应相等的两个三角形全等(SSS);在此基础上回忆全等三角形的另一判别条件:1.(推论)两角及其中一角的对边对应相等的两个三角形全等(AAS),并要求学生利用前面所提到的公理进行证明;2.回忆全等三角形的性质。已知:如图,∠A=∠D,∠B=∠E,BC=EF.求证:△ABC≌△DEF.证明:∵∠A=∠D,∠B=∠E(已知),又∠A+∠B+∠C=°,∠D+∠E+∠F=°(三角形角和等于180°),∴∠C=°-(∠A+∠B),∠F=°-(∠D+∠E),∴∠C=∠F(等量代换)。又BC=EF(已知),∴△ABC≌△DEF(ASA)。第二环节:折纸活动探索新知提问:“等腰三角形有哪些性质?如何探索这些性质的,你能再次通过折纸活动验证这些性质吗?并根据FEDCBA.Word文档折纸过程,得到这些性质的证明吗?”第三环节:明晰结论和证明过程让学生明晰证明过程。(1)等腰三角形的两个底角相等;(2)等腰三角形顶角的平分线、底边中线、底边上高三条线重合第四环节:随堂练习巩固新知第五环节:课堂小结第六环节:布置作业四、教学反思1.等腰三角形(二)一、教学目标:1.知识目标:探索——发现——猜想——证明等腰三角形中相等的线段,进一步熟悉证明的基本步骤和书写格式,体会证明的必要性;2.能力目标:①经历“探索-发现-猜想-证明”的过程,让学生进一步体会证明是探索活动的自然延续和必要发展,发展学生的初步的演绎逻辑推理的能力;②在命题的变式中,发展学生提出问题的能力,拓展命题的能力,从而提高学生的学习能力和思维能力,提高学生学习的主体性;③在图形的观察中,揭示等腰三角形的本质:对称性,发展学生的几何直觉;3.情感与价值观要求①鼓励学生积极参与数学活动,激发学生的好奇心和求知欲.②体验数学活动中的探索与创造,感受数学的严谨性.二.教学重、难点重点:经历“探索——发现一一猜想——证明”的过程,能够用综合法证明有关三角形和等腰三角形的一些结论.三、教学过程分析第一环节:提出问题,引入新课在等腰三角形中作出一些线段(如角平分线、中线、高等),你能发现其中一些相等的线段吗?你能证明你的结论吗?例1证明:等腰三角形两底角的平分线相等.Word文档已知:如图,在△ABC中,AB=AC,BD、CE是△ABC的角平分线.求证:BD=CE.证明:∵AB=AC,∴∠ABC=∠ACB(等边对等角).∵∠1=12∠ABC,∠2=12∠ABC,∴∠1=∠2.在△BDC和△CEB中,∠ACB=∠ABC,BC=CB,∠1=∠2.∴△BDC≌△CEB(ASA).∴BD=CE(全等三角形的对应边相等)第三环节:经典例题变式练习活动容:提请学生思考,除了角平分线、中线、高等特殊的线段外,还可以有哪些线段相等?并在学生思考的基础上,研究课本“议一议”:在课本图1—4的等腰三角形ABC中,(1)如果∠ABD=13∠ABC,∠ACE=14∠ACB呢?由此,你能得到一个什么结论?(2)如果AD=12AC,AE=12AB,那么BD=CE吗?如果AD=13AC,AE=13AB呢?由此你得到什么结论?第四环节:拓展延伸,探索等边三角形性质活动容:提请学生在上面等要三角形性质定理的基础上,思考等边三角形的特殊性质:等边三角形三个角都相等并且每个角都等于60°.已知:ΔABC中,AB=BC=AC.求证:∠A=∠B=∠C=60°.证明:在ΔABC中,∵AB=AC,∴∠B=∠C(等边对等角).同理:∠C=∠A,∴∠A=∠B=∠C(等量代换).又∵∠A+∠B+∠C=°(三角形角和定理),∴∠A=∠B=∠C=60°.第五环节:随堂练习及时巩固第六环节:探讨收获课时小结课外作业四、教学反思4231EDCBA.Word文档1.等腰三角形(三)一.教学目标:1.探索等腰三角形判定定理.2.理解等腰三角形的判定定理,并会运用其进行简单的证明.3.了解反证法的基本证明思路,并能简单应用,培养学生的逆向思维能力。二.教学过程分析第一环节:复习引入活动过程:通过问题串回顾等腰三角形的性质定理以及证明的思路,要求学生独立思考后再进交流。问题1.等腰三角形性质定理的容是什么?这个命题的题设和结论分别是什么?问题2.我们是如何证明上述定理的?问题3.我们把性质定理的条件和结论反过来还成立么?如果一个三角形有两个角相等,那么这两个角所对的边也相等?第二环节:逆向思考,定理证明教师:上面,我们改变问题条件,得出了很多类似的结论,这是研究问题的一种常用方法,除此之外,我们还可以“反过来”思考问题,这也是获得数学结论的一条途径.例如“等边对等角”,反过来成立吗?在△ABC中,∠B=∠C,要想证明AB=AC,只要构造两个全等的三角形,使AB与AC成为对应边就可以了.你是怎样构造的?第三环节:巩固练习例2已知:如图,∠CAE是△ABC的外角,AD∥BC且∠1=∠2.求证:AB=AC.证明:第四环节:适时提问导出反证法我们类比归纳获得一个数学结论,“反过来”思考问题也获得了一个数学结论.如果否定命题的条件,是否也可获得一个数学结论吗?我们一起来“想一想”:小明说,在一个三角形中,如果两个角不相等,那么这两个角所对的边也不相等.你认为这个结论成立吗?如果成立,你能证明它吗?我们来看一位同学的想法:如图,在△ABC中,已知∠B≠∠C,此时AB与Ac要么相等,要么不相等.CBACBAC21BAD.Word文档假设AB=AC,那么根据“等边对等角”定理可得∠C=∠B,但已知条件是∠B≠∠C.“∠C=∠B”与已知条件“∠B≠∠C”相矛盾,因此AB≠AC你能理解他的推理过程吗?再例如,我们要证明△ABC中不可能有两个直角,也可以采用这位同学的证法,假设有两个角是直角,不妨设∠A=90°,∠B=90°,可得∠A+∠B=°,但△AB∠A+∠B+∠C=°,“∠A+∠B=°”与“∠A+∠B+∠C=°”相矛盾,因此△ABC中不可能有两个直角.引导学生思考:上一道面的证法有什么共同的特点呢?引出反证法。都是先假设命题的结论不成立,然后由此推导出了与已知或公理或已证明过的定理相矛盾,从而证明命题的结论一定成立.这也是证明命题的一种方法,我们把它叫做反证法.第五环节:拓展延伸现有等腰三角形纸片,如果能从一个角的顶点出发,将原纸片一次剪开成两块等腰三角形纸片,问此时的等腰三角形的顶角的度数?第六环节:课堂小结课外作业教学反思:1.等腰三角形(四)一、教学目标:1.知识目标:理解等边三角形的判别条件及其证明,理解含有30º角的直角三角形性质及其证明,并能利用这两个定理解决一些简单的问题。2.能力目标:①经历运用几何符号和图形描述命题的条件和结论的过程②经历实际操作,探索含有30º角的直角三角形性质及其推理证明过程,发展合情推理能力和初步的演绎推理的能力;3.情感与价值观要求:①积极参与数学学习活动,对数学有好奇心和求知欲.②在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心.二.教学重难点重点:①等边三角形判定定理的发现与证明.②含30°角的直角三角形的性质定理的发现与证明.难点:含30°角的直角三角形性质定理的探索与证明..Word文档三、教学过程第一环节:提问问题,引入新课回顾等腰三角形的性质和判定定理的基础上,直接提出问题:等边三角形作为一种特殊的等腰三角形,具有哪些性质呢?又如何判别一个三角形是等腰三角形呢?从而引入新课。第二环节:自主探索活动容:学生自主探究等腰三角形成为等边三角形的条件,并交流各自的结论,教师适时要求学生给出相对规的证明,概括出等边三角形的判别条件,并引导学生总结出下表:性质判定的条件等腰三角形(含等边三角形)等边对等角等角对等边“三线合一”即等腰三角形顶角平分线,底边上的中线、高互相重合有一角是60°等边三角形三个角都相等,且每个角都是60°三个角都相等的三角形是等边三角形第三环节:实际操作提出问题提出问题:用含30°角的两个三角尺,你能拼成一个怎样的三角形?能拼出一个等边三角形吗?在你所拼得的等边三角形中,有哪些线段存在相等关系,有哪些线段存在倍数关系,你能得到什么结论?说说你的理由.定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.已知:如图,在Rt△ABC中,∠C=90°,∠BAC=30°.求证:BC=12AB.证明:在△ABC中,∠ACB=90°,∠BAC=30°∠B=60°.延长BC至D,使CD=BC,连接AD(如图所示).∵∠ACB=90°∴∠ACB=90°∵AC=AC,∴△ABC≌△ADC(SAS).∴AB=AD(全等三角形的对应边相等).∴△ABD是等边三角形(有一个角是60°的等腰三角形是等边三角形).∴BC=12BD=12AB.第四环节:变式训练巩固新知[例题]等腰三角形的底角为15°,腰长为2a,求腰上的高CD的长.解:∵∠ABC=∠ACB=15°DCBACBAD.Word文档∴∠DAC=∠ABC+∠ACB=15°+15°=30°∴CD=12AC=12×2a=a(在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半).第五环节:畅谈收获课时小结第六环节:布置作业四、教学反思2.直角三角形(一)一、教学目标1.知识目标:(1)掌握直角三角形的性质定理及判定定理的证明方法。(2)会识别两个互逆命题,知道原命题成立,其逆命题不一定成立.2.能力目标:(1)进一步经历用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感,发展抽象思维.(2)进一步掌握推理证明的方法,发展演绎推理的能力.3.教学重点、难点重点①了解勾股定理及其逆定理的证明方法.②了解逆命题的概念,识别两个互逆命题.难点:勾股定理及其逆定理的证明方法.二、教学过程1:创设情境,引入新课请同学们打开课本P18,阅读“读一读”,了解一下利用教科书给出的公理和推导出的定理,证明勾股定理的方法.2:讲述新课阅读完毕后,针对“读一读”中使用的两种证明方法,着重讨论第一种,第二种方法请有兴趣的同学课后阅读.(1).勾股定理及其逆定理的证明.勾股定理:直角三角形两直角边的平方和等于斜边的平方..Word文档反过来,如果在一个三角形中,当两边的平方和等于第三边的平方时,我们曾用度量的方法得出“这个三角形是直角三角形”的结论.你能证明此结论吗?已知:如图:在△ABC中,AB2+AC2=BC2求证:△ABC是直角三角形.证明:作Rt△A′B′C′,使∠A′=90°,A′B′=AB,A′C′、AC(如图),则A′B′2+A′C′2.(勾股定理).∵AB2+AC2=BC2,A′B′=AB,A′C′∴BC2=B′C′2∴BC=B′C′∴△ABC≌△A′B′C′(SSS)∴∠A=∠A′=90°(全等三角形的对应角相等).因此,△ABC是直角三角形.勾股逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.(2).互逆命题和互逆定理.观察上面两个命题,它们的条件和结论之间有怎样的关系?通过观察,学生会发现:上面两个定理的条件和结论互换了位置,即勾股定理的条件是第二个定理的结论,结论是第二个定理的条件.3:议一议:观察下面三