第一章绪论1.解释下列名词:(1)仪器分析和化学分析;(2)标准曲线与线性范围;(3)灵敏度、精密度、准确度和检出限。答:(1)仪器分析和化学分析:以物质的物理性质和物理化学性质(光、电、热、磁等)为基础的分析方法,这类方法一般需要特殊的仪器,又称为仪器分析法;化学分析是以物质化学反应为基础的分析方法。(2)标准曲线与线性范围:标准曲线是被测物质的浓度或含量与仪器响应信号的关系曲线;标准曲线的直线部分所对应的被测物质浓度(或含量)的范围称为该方法的线性范围。(3)灵敏度、精密度、准确度和检出限:物质单位浓度或单位质量的变化引起响应信号值变化的程度,称为方法的灵敏度;精密度是指使用同一方法,对同一试样进行多次测定所得测定结果的一致程度;试样含量的测定值与试样含量的真实值(或标准值)相符合的程度称为准确度;某一方法在给定的置信水平上可以检出被测物质的最小浓度或最小质量,称为这种方法对该物质的检出限。2.对试样中某一成分进行5次测定,所得测定结果(单位gmL1)分别为0.36,0.38,0.35,0.37,0.39。(1)计算测定结果的相对标准偏差;(2)如果试样中该成分的真实含量是0.38gmL1,试计算测定结果的相对误差。解:(1)测定结果的平均值37.0539.037.035.038.036.0xgmL1标准偏差122222120158.015)37.039.0()37.037.0()37.035.0()37.038.0()37.036.0(1)(mLgnxxsnii相对标准偏差%27.4%10037.00158.0%100xssr(2)相对误差%63.2%10038.038.037.0%100xEr。3.用次甲基蓝二氯乙烷光度法测定试样中硼时,为制作标准曲线,配制一系列质量浓度B(单位mgL1)分别为0.5,1.0,2.0,3.0,4.0,5.0的标准溶液,测得吸光度A分别为0.140,0.160,0.280,0.380,0.410,0.540。试写出该标准曲线的一元线性回归方程,并求出相关系数。解:1158.26)0.50.40.30.20.15.0(LmgLmgxB318.06)540.0410.0380.0280.0160.0140.0(Ay已知线性回归方程为bxay其中088.0)58.2()318.0)(58.2()())((121121niiBniiiBniiniiiAxxyyxxb092.0xbya一元线性回归方程为xy088.0092.0。代入数据可求得相关系数9911.0)()())((2/111221niniiiniiiyyxxyyxxr或9911.0r。4.下面是确定某方法测定铁的检出限的一组数据:空白信号(相对单位)为5.6,5.8,6.2,5.2,5.3,5.6,5.7,5.6,5.9,5.6,5.7;10ngmL1铁标准溶液信号(相对单位)为10.6,10.8,10.6。试计算此方法测定铁的检出限。解:65.5117.56.59.56.57.56.53.52.52.68.56.5bx27.01)(12nxxsnibbib46.627.0365.5bbLskxx检出限SsSxxDbbL3其中)/(502.0)010(65.5)6.108.106.10(3111mLngmLngddxS该方法测定铁的检出限为1161.1)/(502.027.03mLngmLngD。第三章光学分析法导论1.解释下列名词:(1)原子光谱和分子光谱;(2)原子发射光谱和原子吸收光谱;(3)统计权重和简并度;(4)分子振动光谱和分子转动光谱;(5)禁戒跃迁和亚稳态;(6)光谱项和光谱支项;(7)分子荧光、磷光和化学发光;(8)拉曼光谱。答:(1)由原子的外层电子能级跃迁产生的光谱称为原子光谱;由分子的各能级跃迁产生的光谱称为分子光谱。(2)当原子受到外界能量(如热能、电能等)的作用时,激发到较高能级上处于激发态。但激发态的原子很不稳定,一般约在108s内返回到基态或较低能态而发射出的特征谱线形成的光谱称为原子发射光谱;当基态原子蒸气选择性地吸收一定频率的光辐射后跃迁到较高能态,这种选择性地吸收产生的原子特征的光谱称为原子吸收光谱。(3)由能级简并引起的概率权重称为统计权重;在磁场作用下,同一光谱支项会分裂成2J+1个不同的支能级,2J+1称为能级的简并度。(4)由分子在振动能级间跃迁产生的光谱称为分子振动光谱;由分子在不同的转动能级间跃迁产生的光谱称为分子转动光谱。(5)不符合光谱选择定则的跃迁叫禁戒跃迁;若两光谱项之间为禁戒跃迁,处于较高能级的原子具有较长的寿命,原子的这种状态称为亚稳态。(6)用n、L、S、J四个量子数来表示的能量状态称为光谱项,符号为n2S1L;把J值不同的光谱项称为光谱支项,表示为n2S1LJ。(7)荧光和磷光都是光致发光,是物质的基态分子吸收一定波长范围的光辐射激发至单重激发态,再由激发态回到基态而产生的二次辐射。荧光是由单重激发态向基态跃迁产生的光辐射,而磷光是单重激发态先过渡到三重激发态,再由三重激发态向基态跃迁而产生的光辐射。化学发光是化学反应物或反应产物受反应释放的化学能激发而产生的光辐射。(8)入射光子与溶液中试样分子间的非弹性碰撞引起能量交换而产生的与入射光频率不同的散射光形成的光谱称为拉曼光谱。2.计算:(1)670.7nm锂线的频率;(2)3300cm1谱线的波长;(3)钠588.99nm共振线的激发电位。解:(1)1141101047.47.670100.3snmscmcv(2)nmcm30303300111(3)eVnmscmseVchE107.299.588)100.3()10136.4(110153阐明光谱项中各符号的意义和计算方法。答:光谱项表示为n2S1L,其中n为主量子数,其数值等于原子的核外电子层数;S为总自旋量子数,若N为原子的价电子数,S可取2N,12N,22N,…,21,0;L为总轨道角量子数,对于具有两个价电子的原子,L只能取值)(21ll,)1(21ll,)2(21ll,…,21ll。2.电子能级间的能量差一般为120eV,计算在1eV,5eV,10eV和20eV时相应的波长(nm)。解:已知EscmseVEch)100.3()10136.4(1101151eV时,nm12415eV时,nm2.24810eV时,nm1.12420eV时,nm04.62。3.写出镁原子基态和第一电子激发态的光谱项。解:光谱项分别为:基态31S;第一电子激发态31P和33P。第四章原子发射光谱法1.何谓共振线、灵敏线、最后线和分析线?它们之间有什么联系?答:以基态为跃迁低能级的光谱线称为共振线;灵敏线是指元素特征光谱中强度较大的谱线,通常是具有较低激发电位和较大跃迁概率的共振线;最后线是指试样中被测元素含量或浓度逐渐减小时而最后消失的谱线,最后线往往就是最灵敏线;分析线是分析过程中所使用的谱线,是元素的灵敏线。2.解释下列名词:(1)原子线和离子线;(2)等离子体及ICP炬;(3)弧焰温度和电极头温度;(4)谱线的自吸和自蚀;(5)反射光栅和光栅常数;(6)线色散率和分辨率;(7)闪耀角和闪耀波长;(8)谱线的强度和黑度;(9)内标线和分析线对;(10)标准加入法。答:(1)原子线是原子被激发所发射的谱线;离子线是离子被激发所发射的谱线。(2)近代物理学中,把电离度()大于0.1%、其正负电荷相等的电离气体称为等离子体;ICP炬是指高频电能通过电感(感应线圈)耦合到等离子体所得到的外观上类似火焰的高频放电光源。(3)弧焰温度即为激发温度,电极头温度即为蒸发温度。(4)当原子发射的辐射从弧焰中心穿过弧层射出时,被其自身的基态原子所吸收而使谱线中心强度减弱的现象称为谱线的自吸;自吸严重时会使谱线从中央一分为二,这种现象称为自蚀。(5)在光学玻璃或金属高抛光表面上,准确地刻制出许多等宽、等距、平行的具有反射面的刻痕,称为反射光栅;光栅常数是相邻两刻痕间的距离,即为光栅刻痕密度b(mm1)的倒数。(6)线色散率表示具有单位波长差的两条谱线在焦平面上分开的距离;分辨率是根据瑞利准则分辨清楚两条相邻光谱线的能力。(7)闪耀光栅刻痕小反射面与光栅平面的夹角i称为闪耀角;闪耀角所对应辐射能量最大的波长称为闪耀波长。(8)谱线的强度常用辐射强度I(Js1m3)表示,即单位体积的辐射功率,是群体光子辐射总能量的反映;谱线的黑度S是谱线透射比倒数的对数。(9)在基体元素(或定量加入的其它元素)的谱线中选一条谱线为比较线,又称为内标线。在被测定元素的谱线中选一条灵敏线作为分析线,所选用的分析线与内标线组成分析线对。(10)标准加入法是当测定的元素含量很低时,或者试样基体组成复杂、未知时,通过加入已知的不同量或不同浓度的待测元素的标样或标准溶液来测定待测元素含量的方法。3.推导出原子线和离子线强度与原子总密度的关系式,并讨论影响谱线强度的主要因素。答:)/exp()1(kTENvhAZgIiijijiij,影响谱线强度的主要因素有(1)激发电位(Ei),与谱线强度是负指数关系,Ei越低,谱线强度越大;(2)跃迁几率(Aij),与谱线强度成正比;(3)统计权重g,与谱线强度成正比;(4)原子总密度(N),与谱线强度成正比;(5)激发温度,主要影响电离度,存在最佳激发温度。4.谱线自吸对光谱定量分析有何影响?答:在光谱定量分析中,自吸现象的出现,将严重影响谱线的强度,限制可分析的含量范围。5.激发光源的作用是什么?对其性能有何具体要求?答:激发光源的作用是提供试样蒸发、解离和激发所需要的能量,并产生辐射信号;对激发光源的要求是:激发能力强,灵敏度高,稳定性好,结构简单,操作方便,使用安全。6.常用的激发光源有哪几种类型?简述工作原理和基本特点。答:目前常用的激发光源有(1)直流电弧光源,其工作原理是:直流电弧被高频引燃装置引燃,阴极产生热电子发射,电子在电场作用下高速奔向阳极,炽热的阳极斑使试样蒸发、解离,解离的气态原子与电子碰撞激发并电离,形成的正离子撞击阴极,阴极不断发射电子,这样电极间形成等离子体,并维持电弧放电,气态原子、离子与等离子体中其它粒子碰撞激发,产生原子、离子的发射光谱;其特点是,电极温度高,分析的绝对灵敏度高,电弧温度一般可达4000~7000K,激发能力强,但放电的稳定性差,定量分析的精密度不高,适用于矿物和难挥发试样的定性、半定量及痕量元素的分析。(2)低压交流电弧光源,其工作原理是:为了维持交流电弧放电,发生器由高频高压引燃电路和低压电弧电路组成。电源接通后,高频高压电路使分析间隙的空气电离,形成等离子气体导电通道,引燃电弧。同时,低压交流电经低频低压电弧电路在分析间隙产生电弧放电。随着分析间隙电流增大,出现明显的电压降,当电压降低于维持放电所需电压使,电弧即熄灭。每交流半周都以相同步骤用高频高压电流引燃一次,反复进行此过程可使低压交流电弧维持不灭。其特点是:弧焰温度可达4000~8000K,激发能力强,但电极温度低,其蒸发能力稍差,光源稳定性较好,定量分析的精密度较高,广泛用于金属、合金中低含量元素的定量分析。(3)高压火花光源,其工作原理是:高压火花发生器使电容器储存很高的能量,产生很大电流密度的火花放电,放电后的电容器的两端电压下降,在交流电第二个半周时,电容器又重新充电、再放电。反复进行充电、放电以维持火花持续放电。其特点是:电极温度低,灵敏度低,火花温度高,可激发难激发元素