第1页(共13页)二次根式练习题附答案一、选择题1.计算÷=()A.B.5C.D.2.下列二次根式中,不能与合并的是()A.B.C.D.3.计算:﹣的结果是()A.B.2C.2D.2.84.下列运算正确的是()A.2+=2B.5﹣=5C.5+=6D.+2=35.计算|2﹣|+|4﹣|的值是()A.﹣2B.2C.2﹣6D.6﹣26.小明的作业本上有以下四题:①=4a2;②•=5a;③a==;④÷=4.做错的题是()A.①B.②C.③D.④7.下列四个命题,正确的有()个.①有理数与无理数之和是有理数②有理数与无理数之和是无理数③无理数与无理数之和是无理数④无理数与无理数之积是无理数.A.1B.2C.3D.48.若最简二次根式和能合并,则x的值可能为()A.B.C.2D.59.已知等腰三角形的两边长为2和5,则此等腰三角形的周长为()A.4+5B.2+10C.4+10D.4+5或2+10第2页(共13页)二、填空题10.×=;=.11.计算:(+1)(﹣1)=.12.(+2)2=.13.若一个长方体的长为,宽为,高为,则它的体积为cm3.14.化简:=.15.计算(+1)2015(﹣1)2014=.16.已知x1=+,x2=﹣,则x12+x22=.三、解答题17.计算:(1)(﹣)2;(2)(+)(﹣).(3)(+3)2.18.化简:(1);(2)19.计算:(1)×+3;(2)(﹣)×;(3).20.(6分)计算:(3+)(3﹣)﹣(﹣1)2.21.计算:(1)(﹣)+;(2).(用两种方法解)22.计算:(1)9﹣7+5;(2)÷﹣×+.23.已知:x=1﹣,y=1+,求x2+y2﹣xy﹣2x+2y的值.第3页(共13页)《2.7二次根式(一)》参考答案与试题解析一、选择题1.计算÷=()A.B.5C.D.【考点】二次根式的乘除法.【专题】计算题.【分析】根据÷=(a≥0,b>0)计算即可.【解答】解:原式==,故选A.【点评】本题考查了二次根式的乘除法,解题的关键是掌握二次根式除法计算公式.2.下列二次根式中,不能与合并的是()A.B.C.D.【考点】同类二次根式.【专题】计算题.【分析】原式各项化简,找出与不是同类项的即可.【解答】解:A、原式=,不合题意;B、原式=2,不合题意;C、原式=2,符合题意;D、原式=3,不合题意,故选C【点评】此题考查了同类二次根式,熟练掌握同类二次根式的定义是解本题的关键.3.计算:﹣的结果是()A.B.2C.2D.2.8第4页(共13页)【考点】二次根式的加减法.【专题】计算题.【分析】原式各项化简后,合并即可得到结果.【解答】解:原式=4﹣2=2,故选C【点评】此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键.4.下列运算正确的是()A.2+=2B.5﹣=5C.5+=6D.+2=3【考点】二次根式的加减法.【专题】计算题.【分析】原式各项合并得到结果,即可做出判断.【解答】解:A、原式不能合并,错误;B、原式=4,错误;C、原式=6,正确;D、原式不能合并,错误,故选C【点评】此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键.5.计算|2﹣|+|4﹣|的值是()A.﹣2B.2C.2﹣6D.6﹣2【考点】二次根式的加减法.【分析】先进行绝对值的化简,然后合并同类二次根式求解.【解答】解:原式=﹣2+4﹣=2.故选B.【点评】本题考查了二次根式的加减法,解答本题的关键是掌握绝对值的化简.第5页(共13页)6.小明的作业本上有以下四题:①=4a2;②•=5a;③a==;④÷=4.做错的题是()A.①B.②C.③D.④【考点】二次根式的乘除法.【分析】利用二次根式的性质进而化简求出即可.【解答】解:①=4a2,正确;②•=5a,正确;③a==,正确;④÷==2,故此选项错误.故选:D.【点评】此题主要考查了二次根式的乘除法,正确化简二次根式是解题关键.7.下列四个命题,正确的有()个.①有理数与无理数之和是有理数②有理数与无理数之和是无理数③无理数与无理数之和是无理数④无理数与无理数之积是无理数.A.1B.2C.3D.4【考点】实数的运算.【专题】探究型.【分析】根据无理数、有理数的定义及实数的混合运算进行解答即可.【解答】解:①有理数与无理数的和一定是有理数,故本小题错误;②有理数与无理数的和一定是无理数,故本小题正确;③例如﹣+=0,0是有理数,故本小题错误;④例如(﹣)×=﹣2,﹣2是有理数,故本小题错误.故选A.【点评】本题考查的是实数的运算及无理数、有理数的定义,熟知以上知识是解答此题的关键.第6页(共13页)8.若最简二次根式和能合并,则x的值可能为()A.B.C.2D.5【考点】同类二次根式.【分析】根据能合并的最简二次根式是同类二次根式列出方程求解即可.【解答】解:∵最简二次根式和能合并,∴2x+1=4x﹣3,解得x=2.故选C.【点评】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.9.已知等腰三角形的两边长为2和5,则此等腰三角形的周长为()A.4+5B.2+10C.4+10D.4+5或2+10【考点】二次根式的应用;等腰三角形的性质.【专题】计算题.【分析】先由三角形的三边关系确定出第三边的长,再求周长.【解答】解:∵2×2<5∴只能是腰长为5∴等腰三角形的周长=2×5+2=10+2.故选B.【点评】本题考查了等腰三角形的性质:两腰相等,注意要用三角形的三边关系确定出第三边.二、填空题10.×=2;=.【考点】二次根式的乘除法.【分析】直接利用二次根式的性质化简求出即可.【解答】解:×==2,第7页(共13页)==.故答案为:2,.【点评】此题主要考查了二次根式的乘除法,正确化简二次根式是解题关键.11.计算:(+1)(﹣1)=1.【考点】二次根式的乘除法;平方差公式.【专题】计算题.【分析】两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数.就可以用平方差公式计算.结果是乘式中两项的平方差(相同项的平方减去相反项的平方).【解答】解:(+1)(﹣1)=.故答案为:1.【点评】本题应用了平方差公式,使计算比利用多项式乘法法则要简单.12.(+2)2=9+4.【考点】二次根式的混合运算.【专题】计算题.【分析】利用完全平方公式计算.【解答】解:原式=5+4+4=9+4.故答案为9+4.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.13.若一个长方体的长为,宽为,高为,则它的体积为12cm3.【考点】二次根式的乘除法.【分析】首先根据正方体的体积列出计算式,然后利用二次根式的乘除法法则计算即可求解.【解答】解:依题意得,正方体的体积为:2××=12cm3.故答案为:12.第8页(共13页)【点评】此题主要考查了二次根式的乘法,同时也利用了正方体的体积公式,正确理解二次根式乘法、积的算术平方根等概念是解答问题的关键.14.化简:=.【考点】二次根式的加减法.【分析】先进行二次根式的化简,然后合并即可.【解答】解:原式=3+2+=.【点评】本题考查了二次根式的加减法,属于基础题,关键是掌握二次根式的化简.15.计算(+1)2015(﹣1)2014=+1.【考点】二次根式的混合运算.【专题】计算题.【分析】先根据积的乘方得到原式=[(+1)•(﹣1)]2014•(+1),然后利用平方差公式计算.【解答】解:原式=[(+1)•(﹣1)]2014•(+1)=(2﹣1)2014•(+1)=+1.故答案为+1.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.16.已知x1=+,x2=﹣,则x12+x22=10.【考点】二次根式的混合运算.【分析】首先把x12+x22=(x1+x2)2﹣2x1x2,再进一步代入求得数值即可.【解答】解:∵x1=+,x2=﹣,∴x12+x22=(x1+x2)2﹣2x1x2=(++﹣)2﹣2(+)×(﹣)第9页(共13页)=12﹣2=10.故答案为:10.【点评】此题考查二次根式的混合运算,把代数式利用完全平方公式化简是解决问题的关键.三、解答题17.计算:(1)(﹣)2;(2)(+)(﹣).(3)(+3)2.【考点】二次根式的混合运算.【分析】(1)(3)利用完全平方公式计算即可;(2)利用平方差公式计算即可.【解答】解:(1)原式=2﹣2+=;(2)原式=2﹣3=﹣1;(3)原式=5+6+18=23+6.【点评】此题考查二次根式的混合运算,掌握完全平方公式和平方差公式是解决问题的关键.18.化简:(1);(2)【考点】二次根式的乘除法.【分析】(1)根据二次根式的乘法法则计算;(2)可以直接进行分母有理化.【解答】解:(1)=4×2=8;(2)=.【点评】此题考查了乘法法则、分母有理化和二次根式的性质:=|a|.第10页(共13页)19.计算:(1)×+3;(2)(﹣)×;(3).【考点】二次根式的混合运算.【专题】计算题.【分析】(1)利用二次根式的乘法法则运算;(2)先利用二次根式的乘法法则运算,然后合并即可;(3)先把各二次根式化为最简二次根式,然后合并后进行二次根式的除法运算.【解答】解:(1)原式=+3=4+3=7;(2)原式=﹣=﹣3=﹣2;(3)原式===2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.20.计算:(3+)(3﹣)﹣(﹣1)2.【考点】二次根式的混合运算.【分析】利用完全平方公式和平方差公式计算,再进一步合并即可.【解答】解:原式=9﹣5﹣4+2=2.【点评】本题考查的是二次根式的混合运算,掌握完全平方公式和平方差公式是解决问题的关键.第11页(共13页)21.计算:(1)(﹣)+;(2).(用两种方法解)【考点】二次根式的混合运算.【分析】(1)先算乘法,再算加减;(2)先化简,再算除法或利用二次根式的除法计算.【解答】解:(1)原式=2﹣+=2;(2)方法一:原式=﹣=﹣1;方法二:原式==﹣1.【点评】本题考查的是二次根式的混合运算,在进行此类运算时,一般先把二次根式化为最简二次根式的形式后再运算.22.计算:(1)9﹣7+5;(2)÷﹣×+.【考点】二次根式的混合运算.【专题】计算题.【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先利用二次根式的除法和乘法法则运算,然后合并即可.【解答】解:(1)原式=9﹣14+20=15;(2)原式=﹣+2=4﹣+2=4+.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.第12页(共13页)23.已知:x=1﹣,y=1+,求x2+y2﹣xy﹣2x+2y的值.【考点】二次根式的化简求值;因式分解的应用.【专题】计算题.【分析】根据x、y的值,先求出x﹣y和xy,再化简原式,代入求值即可.【解答】解:∵x=1﹣,y=1+,∴x﹣y=(1﹣)﹣(1+)=﹣2,xy=(1﹣)(1+)=﹣1,∴x2+y2﹣xy﹣2x+2y=(x﹣y)2﹣2(x﹣y)+xy=(﹣2)2﹣2×(﹣2)+(﹣1)=7+4.【点评】本题考查了二次根式的化简以及因式分解的应用,要熟练掌握平方差公式和完全平方公式.第13页(共13页)