八年级下四边形知识点经典题型要点总结

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

朔州市文曲星教育文化培训中心1中考四边形与三角形复习要求是,能运用这些图形进行镶嵌,你必须会计算特殊的初中数学四边形,能根据图形的条件把四边形面积等分。能够对初中数学特殊四边形的判定方法与联系深刻理解。掌握平行四边形、矩形、菱形、正方形、等腰梯形的概念、性质和常用判别方法,特别是梯形添加辅助线的常用方法.掌握三角形中位线和梯形中位线性质的推导和应用。会画出四边形全等变换后的图形,会结合相关的知识解题.结合几何中的其他知识解答一些有探索性、开放性的问题,提高解决问题的能力·(一)、平行四边形的定义、性质及判定.1:两组对边平行的四边形是平行四边形.2.性质:(1)平行四边形的对边相等且平行;(2)平行四边形的对角相等,邻角互补;(3)平行四边形的对角线互相平分.3.判定:(1)两组对边分别平行的四边形是平行四边形:(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形:(5)对角线互相平分的四边形是平行四边形.4·对称性:平行四边形是中心对称图形.(二)、矩形的定义、性质及判定.1-定义:有一个角是直角的平行四边形叫做矩形.22·性质:矩形的四个角都是直角,矩形的对角线相等3.判定:(1)有一个角是直角的平行四边形叫做矩形;(2)有三个角是直角的四边形是矩形:(3)两条对角线相等的平行四边形是矩形.4·对称性:矩形是轴对称图形也是中心对称图形.(三)、菱形的定义、性质及判定.1·定义:有一组邻边相等的平行四边形叫做菱形.(1)菱形的四条边都相等;。(2)菱形的对角线互相垂直,并且每一条对角线平分一组对角(3)菱形被两条对角线分成四个全等的直角三角形.(4)菱形的面积等于两条对角线长的积的一半:s菱=争6(n、6分别为对角线长).3.判定:(1)有一组邻边相等的平行四边形叫做菱形(2)四条边都相等的四边形是菱形;(3)对角线互相垂直的平行四边形是菱形.4.对称性:菱形是轴对称图形也是中心对称图形.(四)、正方形定义、性质及判定.'1.定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.2.性质:(1)正方形四个角都是直角,四条边都相等;(2)正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;(3)正方形的一条对角线把正方形分成两个全等的等腰直角三角形;3(4)正方形的对角线与边的夹角是45。;(5)正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.3.判定:(1)先判定一个四边形是矩形,再判定出有一组邻边相等;(2)先判定一个四边形是菱形,再判定出有一个角是直角.4.对称性:正方形是轴对称图形也是中心对称图形.(五)、梯形的定义、等腰梯形的性质及判定.1.定义:一组对边平行,另一组对边不平行的四边形是梯形.两腰相等的梯形是等腰梯形.一腰垂直于底的梯形是直角梯形.2.等腰梯形的性质:等腰梯形的两腰相等;同一底上的两个角相等;两条对角线相等.3.等腰梯形的判定:两腰相等的梯形是等腰梯形;同一底上的两个角相等的梯形是等腰梯形;两条对角线相等的梯形是等腰梯形.4.对称性:等腰梯形是轴对称图形.(六)、三角形的中位线平行于三角形的第三边并等于第三边的一半;梯形的中位线平行于梯形的两底并等于两底和的一半.(七)、线段的重心是线段的中点;平行四边形的重心是两对角线的交点;三角形的重心是三条中线的交点..(八)、依次连接任意一个四边形各边中点所得的四边形叫中点四边形4图13-4ODCBA四边形经典题型1.如果一个四边形内角之比是2∶2∶3∶5,那么这四个内角中()A.有两个钝角B.有两个直角C.只有一个直角D.只有一个锐角2.一个多边形的外角和是内角和的一半,则它是边形()A.7B.6C.5D.43.若多边形的每个内角都为150°,则从一个顶点引的对角线有()A.7条B.8条C.9条D.10条4.一个多边形的内角和是外角和的212倍,则边数是()A.14B.7C.21D.105.一个多边形的每个内角都等于144°,这个多边形的边数是()A.8B.9C.10D.116.∠A的两边分别垂直于∠B的两边,且∠A比∠B大60°,则∠A等于()A.120°B.110°C.100°D.90°7.若等角n边形的一个外角不大于40°,则它是边形()A.n=8B.n=9C.n>9D.n≥98.每个内角都相等的多边形,它的一个外角等于一个内角的32,则这个多边形是边形.9.两个多边形的边数之比为1∶2,内角和的度数之比为1∶3,求这两个多边形的边数.10.已知线段AC=8,BD=6。(1)已知线段AC垂直于线段BD。设图13―1、图13―2和图13―3中的四边形ABCD的面积分别为S1、S2和S3,则S1=,S2=,S3=;(2)如图13―4,对于线段AC与线段BD垂直相交(垂足O不与点A,C,B,D重合)的任意情形,请你就四边形ABCD面积的大小提出猜想,并证明你的猜想;(3)当线段BD与AC(或CA)的延工线垂直相交时,猜想顺次连接点A,B,C,D,A所围成的封闭图形的面积是多少?5经典1:如图,平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E、F.求证:∠BAE=∠DCF.经典2:如图,在□ABCD中,O是对角线AC和BD的交点,OE⊥AD于E,OF⊥BC于F.求证:OE=OF.经典3:如图,在平行四边形ABCD的各边AB、BC、CD、DA上,分别取点K、L、M、N,使AK=CM、BL=DN,求证:四边形KLMN是平行四边形.经典4:已知如图:在平行四边形ABCD中,延长AB到E,延长CD到F,使BE=DF,则线段AC与EF是否互相平分?说明理由.注意:其他还有一些判定平行四边形的方法,但都不能作为定理使用。如:“两组对角分别相等的四边形是平行四边形”,它显然是一个真命题,但不能作为定理使用.6经典5:如图,矩形ABCD中,AC与BD交于O点,BE⊥AC于E,CF⊥BD于F.求证:BE=CF.经典6:如图,在△ABC中,AB=AC,D为BC中点,四边形ABDE是平行四边形.求证:四边形ADCE是.经典练习:1.平行四边形ABCD的周长32,5AB=3BC,则对角线AC的取值范围为()A.6AC10B.6AC16C.10AC16D.4AC162.如图,在平行四边形ABCD中,下列各式不一定正确的是()A.012180B.023180C.034180D.0241803.如图,在平行四边形ABCD中,E是AD上一点,连结CE并延长交BA的延长线于点F,则下列结论中错误的OABCDEF7是()A.∠AEF=∠DECB.FA:CD=AE:BCC.FA:AB=FE:ECD.AB=DC4.如图,在□ABCD中,对角线AC,BD相交于点O,E,F是对角线AC上的两点,当E,F满足下列哪个条件时,四边形DEBF不一定是平行四边形()A.AE=CFB.DE=BFC.∠ADE=∠CBFD.∠AED=∠CFB5.如图,ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD上的点F,若△FDE的周长为8,△FCB的周长为22,则FC的长为_。6.已知:□ABCD中,AE平分∠DAB交DC于E,BF平分∠ABC交DC于F,DC=8cm,AD=3cm,求DE、DF与FC的长.7.如图,在ABCD中,对角线AC与BD交于点O,已知点E、F分别为AO、OC的中点,证明:四边形BFDE是平行四边形.8.已知:□ABCD中的对角线AC、BD相交于O,M是AO的中点,N是CO的中点,请问:BM与DN有什么关系?9.如下图,平行四边形ABCD中,E、F分别是AB、CD的中点,AF与DE交于点G,CE与BF交于点H,问:图中还有哪些平行四边形?请证明你的结论.8DEFGBACGFECADB10.如图,在格点图中,以格点A、B、C、D、E、F为顶点,你能画出多少个平行四边形?试在图中画出来.11.如图,在△ABC中,D、E分别是AB、AC的中点,F是DE延长线上的点,且EF=DE,则图中的平行四边形有哪些?说说你的理由.12.已知任意..四边形ABCD,且线段AB、BC、CD、DA、AC、BD的中点分别是E、F、G、H、P、Q.(1)若四边形ABCD如图①,判断下列结论是否正确(正确的在括号里填“√”,错误的在括号里填“×”).甲:顺次连接EF、FG、GH、HE一定得到平行四边形;()乙:顺次连接EQ、QG、GP、PE一定得到平行四边形.()(2)请选择甲、乙中的一个,证明你对它的判断.(3)若四边形ABCD如图②,请你判断(1)中的两个结论是否成立?13.直角三角形斜边上的高与中线分别是5cm和6cm,则它的面积为___14.如图,矩形纸片ABCD,长AD=9cm,宽AB=3cm,将其折叠,使点D与点B重合,那么折叠后DE的长和折痕EF的长分别为和。9BACEDOODABCEF15.矩形的较长边为6,两条对角线的交角为60°,则矩形的周长是()A.18B.12+43C.12+23D.2416.如图,在矩形ABCD中,AB=3,AD=4,点P在AD上,PE⊥AC于E,PF⊥BD于F,则PE+PF等于()A.57B.512C.513D.51417.如图,矩形ABCD的周长为20cm,两条对角线相交于点O,过点O作AC的垂线EF,分别交AD、BC于E、F点,连接CE,则△CDE的周长为()A.5cmB.8cmC.9cmD.10cm18.如图,在矩形ABCD中,AC、BD相交于O,AE平分∠BAD,交BC于E,若∠CAE=15°,求∠BOE的度数.19.已知:如图,在ABCD中,以AC为斜边作Rt△ACE,且∠BED为直角.求证:四边形ABCD是矩形.20、如图,四边形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.(1)求证:四边形AECD是菱形;(2)若点E是AB的中点,试判断△ABC的形状,并说明理由.

1 / 9
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功