常微分方程习题2.11.xydxdy2=,并求满足初始条件:x=0,y=1的特解.解:对原式进行变量分离得。故它的特解为代入得把即两边同时积分得:eexxycyxxcycyxdxdyy22,11,0,ln,212=====+==,0)1(.22=++dyxdxy并求满足初始条件:x=0,y=1的特解.解:对原式进行变量分离得:。故特解是时,代入式子得。当时显然也是原方程的解当即时,两边同时积分得;当xycyxyxcycyxydydxxy++=====++=+=+≠=+−1ln11,11,001ln1,11ln0,11123yxydxdyxy321++=解:原式可化为:xxyxxyxyxyyxyccccxdxxdyyyxydxdy2222222232232)1(1)1)(1(),0(ln1ln21ln1ln2111,0111=++=++≠++−=++=+≠+•+=+)故原方程的解为(即两边积分得故分离变量得显然.0;0;ln,ln,lnln0110000)1()1(4===−==−+=−++=−=+≠===−++xycyxxycyxxycyyxxdyyydxxxxyxyxdyyydxx故原方程的解为即两边积分时,变量分离是方程的解,当或解:由:10ln1lnln1ln1,0ln0)ln(ln:931:8.coslnsinln07lnsgnarcsinlnsgnarcsin1sgn11,)1(,,,6ln)1ln(21111,11,,,0)()(:53322222222222cdxdydxdyxycyuduudxxxyudxxydyxyydxdyyxxcdyyyyydxdycxytgxdxctgydyctgxdytgydxcxxxycxxudxxxduxdxdudxduxudxdyuxyuxyydxdyxcxarctgudxxduuuudxduxudxduxudxdyuxyuxyxyxydxdydxxydyxyeeeeeeeexyuuxyxuuxyxyyxxx+===+=+−===−•−=−−+−=−=+−===−=+•=+•=•=−−=+===−+=+−=++=++−++=++===+−==−++−+−−两边积分解:变量分离:。代回原变量得:则有:令解:方程可变为:解:变量分离,得两边积分得:解:变量分离,得::也是方程的解。另外,代回原来变量,得两边积分得:分离变量得:则原方程化为:解:令:。两边积分得:变量分离,得:则令解:cxyxarctgcxarctgtdxdtdxdtdxdtdxdytyxdxdycdxdydxdyttyxeeeeexyxyyx+=++==++=+==+=+===+−)(,11111,.11222)(代回变量得:两边积分变量分离得:原方程可变为:则解:令两边积分得:解:变量分离,12.2)(1yxdxdy+=解cxyxarctgyxcxarctgttdxdttttdxdtdxdtdxdytyx+=+−++=−=++=−==+)(1111222,代回变量,两边积分变量分离,原方程可变为,则令变量分离,则方程可化为:令则有令的解为解:方程组UUdXdUXUXYYXYXdXdYYyXxyxyxyxyxyxdxdyU21222'22,31,3131,31;012,0121212.132−+−==−−=+=−==−==+−=−−+−−−=.7)5(72177217)7(,71,1,525,14)5(22cxyxcxtdxdttttdxdtdxdtdxdytyxyxyxdxdyyxt+−=+−−+−=−−−−=−−===−−−+−=+−代回变量两边积分变量分离原方程化为:则解:令15.18)14()1(22+++++=xyyxdxdy原方程的解。,是,两边积分得分离变量,,所以求导得,则关于令解:方程化为cxyxarctgdxduuudxdudxdudxdyxuyxyxxyyyxxdxdy+=++=++==+=+++++=+++++++=6)383232(941494141412)14(181816122222216.2252622yxxyxydxdy+−=解:,则原方程化为,,令uyxxyxydxdyxxyyxydxdy=+−==+−=32322332322232]2)[(32(2)(126326322222+−=+−=xuxuxxuxudxdu,这是齐次方程,令cxxyxycxyxycxxyxycxzzdxxdzdzzzzzxyxyzzzzzzzdxdzxdxdzxzzzdxdzxzdxduzxu15337333533735372233222)2()3(023)2()3,)2()3112062312306)1.(..........1261263=+−=−===+−=+−=−−+≠−−−==−===−−+−−=+=+−+==的解为时。故原方程包含在通解中当或,又因为即(,两边积分的(时,变量分离当是方程的解。或)方程的解。即是(或,得当,,,,所以,则17.yyyxxxyxdxdy−+++=3232332解:原方程化为123132;;;;;)123()132(2222222222−+++=−+++=yxyxdxdyyxyyxxdxdy令)1.......(123132;;;;;;;;;;;;,22−+++===uvuvdvduvxuy则方程组,,,);令,的解为(111101230132+=−=−⎩⎨⎧=−+=++uYvZuvuv则有⎪⎪⎩⎪⎪⎨⎧++==+=+zyzydzdyyzyz23321023032)化为,,,,从而方程(令)2.(..........232223322,,,,,所以,,则有ttdzdtzttdzdtztdzdtztdzdyzyt+−=++=++==当是原方程的解或的解。得,是方程时,,即222222)2(1022xyxytt−=−=±==−当cxyxydzzdtttt5222222)2(12223022+−=+=−+≠−两边积分的时,,分离变量得另外cxyxyxyxy522222222)2(2+−=+−=−=原方程的解为,包含在其通解中,故,或,这也就是方程的解。,两边积分得分离变量得,则原方程化为令解)(并由此求解下列方程可化为变量分离方程,经变换证明方程cyxxydxxduuuuuxuuuuxyxyxdxdyyxxdydxyxyuxyxyfdxdyyx+==−−=+−+====+==+=+=++==+=≠==+=+=+==−−==+=−+==+===4ln142241)22(1dxduuxy(2)0.x,c2故原方程的解为原也包含在此通解中。0y,c2即,c2两边同时积分得:dxx12udu变量分离得:),(2ux1dxdu则方程化为u,xy令1dxdyyx时,方程化为0sxy是原方程的解,当0y或0x当:(1)解程。故此方程为此方程为变u)(uf(u)x11)(f(u)xu1)y(f(u)dxduf(u),1dxduy1得:ydxdudxdyx所以,dxdydxdyxy求导导得x关于u,xy证明:因为22).2()1(.1)(18.222222222222224223322222222xyxyxyxyxuuuuyx19.已知f(x)∫≠=xxfxdtxf0)(,0,1)(的一般表达式试求函数.解:设f(x)=y,则原方程化为∫=xydtxf01)(两边求导得'12yyy−=cxyycxdyydxdxdyy+±==+−==−21;;;;;121;;;;;;;;;;;;1;;;;;;;;;;233所以两边积分得代入把cxy+±=21∫=xydtxf01)(xyccxccxcxdtctx21,02)2(;;;;;;;;;;2210±==+±=−+±+±=+±∫所以得20.求具有性质x(t+s)=)()(1)()(sxtxsxtx−+的函数x(t),已知x’(0)存在。解:令t=s=0x(0)=)0(1)0()0(xxx−+=)0()0(1)0(2xxx−若x(0)≠0得x2=-1矛盾。所以x(0)=0.x’(t)=)(1)(0(')()(1[))(1)((lim)()(lim22txxtxtxttxtxttxttx+=Δ−Δ+Δ=Δ−Δ+)))(1)(0(')(2txxdttdx+=dtxtxtdx)0(')(1)(2=+两边积分得arctgx(t)=x’(0)t+c所以x(t)=tg[x’(0)t+c]当t=0时x(0)=0故c=0所以x(t)=tg[x’(0)t]02411黄罕鳞(41)甘代祥(42)习题2.2求下列方程的解1.dxdy=xysin+解:y=e∫dx(∫xsine∫−dxcdx+)=ex[-21ex−(xxcossin+)+c]=cex-21(xxcossin+)是原方程的解。2.dtdx+3x=et2为解:原方程可化:dtdx=-3x+et2所以:x=e∫−dt3(∫et2e−∫−dt3cdt+)=et3−(51et5+c)=cet3−+51et2是原方程的解。3.dtds=-stcos+21t2sin解:s=e∫−tdtcos(t2sin21∫edtdt∫3c+)=etsin−(∫+cdttettsincossin)=etsin−(cetett+−sinsinsin)=1sinsin−+−tcet是原方程的解。4.dxdynxxeynx=−,n为数常.为解:原方程可化:dxdynxxeynx+=)(cdxexeeydxxnnxdxxn+∫∫=∫−)(cexxn+=是原方程的解.5.dxdy+1212−−yxx=0为解:原方程可化:dxdy=-1212+−yxx∫=−dxxxey212(cdxedxxx+∫−221))21(ln2+=xe)(1ln2∫+−−cdxexx=)1(12xcex+是原方程的解.6.dxdy234xyxx+=解:dxdy234xyxx+==23yx+xy令xyu=则uxy=dxdy=udxdux+因此:dxduxu+=2ux21udxdu=dxduu=2cxu+=331cxxu+=−33(*)将xyu=带入(*)中得:3433cxxy=−是原方程的解.3332()21()227.(1)12(1)12(),()(1)1(1)(())1(1)dxPxdxxPxdxdyyxdxxdyyxdxxPxQxxxeexeQxdxcx+−−=++=+++==++∫∫==+∫∫++∫∫P(x)dx232解:方程的通解为:y=e=(x+1)(*(x+1)dx+c)=(x+1)((x+23221(1)()211,()(())dyyxcdyydxxydxxydyyyQyyyeyQydyc−+++==+=∫∫==∫∫+∫∫2243P(y)dyP(y)dyP(y)dy1)dx+c)=(x+1)即:2y=c(x+1)+(x+1)为方程的通解。8.=x+y解:则P(y)=e方程的通解为:x=ee2331*)22ydycyycyy++∫=y(=即x=+cy是方程的通解,且y=0也是方程的解。()()()19.,1),()(())01adxPxdxaxPxdxPxdxaadyayxadxxxaxPxQxxxeexeeQxdxcaa−+=++==∫∫==∫∫+==∫为常数解:(方程的通解为:y=1x+1=x(dx+c)xx当时,方程的通解为y=x+ln/x/+c当时,方程01aaa≠a的通解为y=cx+xln/x/-1当,时,方程的通解为x1y=cx+-1-3331()()()310.11(),()1(())(*)dxPxdxxPxdxPxdxdyxyxdxdyyxdxxPxQxxxeexeeQxdxcxxdxccxcx−−+==−+=−=∫∫==∫∫++++∫∫33解:方程的通解为: y=1=xx=4x方程的通解为: y=4()()()223333233232332311.2()2()()2,()2(())((2)pxxdxxpxpxxdyxyxydxxyxydxxyxydxxyxdxyzdzxzxdxPxxQxxedxeeedxedxQxdxcex−−