中考数学压轴题100题精选以及答案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2010年中考数学压轴题100题精选(1-10题)答案【001】解:(1)抛物线2(1)33(0)yaxa经过点(20)A,,309333aa·······································································································1分二次函数的解析式为:232383333yxx·························································3分(2)D为抛物线的顶点(133)D,过D作DNOB于N,则33DN,2233(33)660ANADDAO,°···························································4分OMAD∥①当ADOP时,四边形DAOP是平行四边形66(s)OPt·······················································5分②当DPOM时,四边形DAOP是直角梯形过O作OHAD于H,2AO,则1AH(如果没求出60DAO°可由RtRtOHADNA△∽△求1AH)55(s)OPDHt··········································································································6分③当PDOA时,四边形DAOP是等腰梯形26244(s)OPADAHt综上所述:当6t、5、4时,对应四边形分别是平行四边形、直角梯形、等腰梯形.··7分(3)由(2)及已知,60COBOCOBOCB°,,△是等边三角形则6262(03)OBOCADOPtBQtOQtt,,,过P作PEOQ于E,则32PEt···················································································8分113633(62)222BCPQStt=233633228t·····································9分当32t时,BCPQS的面积最小值为6338············································································10分此时3339333324444OQOPOEQEPE,=,xyMCDPQOABNEH222233933442PQPEQE······························································11分【002】解:(1)1,85;(2)作QF⊥AC于点F,如图3,AQ=CP=t,∴3APt.由△AQF∽△ABC,22534BC,得45QFt.∴45QFt.∴14(3)25Stt,即22655Stt.(3)能.①当DE∥QB时,如图4.∵DE⊥PQ,∴PQ⊥QB,四边形QBED是直角梯形.此时∠AQP=90°.由△APQ∽△ABC,得AQAPACAB,即335tt.解得98t.②如图5,当PQ∥BC时,DE⊥BC,四边形QBED是直角梯形.此时∠APQ=90°.由△AQP∽△ABC,得AQAPABAC,即353tt.解得158t.(4)52t或4514t.【注:①点P由C向A运动,DE经过点C.方法一、连接QC,作QG⊥BC于点G,如图6.PCt,222QCQGCG2234[(5)][4(5)]55tt.由22PCQC,得22234[(5)][4(5)]55ttt,解得52t.方法二、由CQCPAQ,得QACQCA,进而可得BBCQ,得CQBQ,∴52AQBQ.∴52t.②点P由A向C运动,DE经过点C,如图7.22234(6)[(5)][4(5)]55ttt,4514t】【003】解.(1)点A的坐标为(4,8)…………………1分将A(4,8)、C(8,0)两点坐标分别代入y=ax2+bxACBPQED图4AC)BPQD图3E)FACBPQED图5AC(E))BPQD图6GAC(E))BPQD图7G8=16a+4b得0=64a+8b解得a=-12,b=4∴抛物线的解析式为:y=-12x2+4x…………………3分(2)①在Rt△APE和Rt△ABC中,tan∠PAE=PEAP=BCAB,即PEAP=48∴PE=12AP=12t.PB=8-t.∴点E的坐标为(4+12t,8-t).∴点G的纵坐标为:-12(4+12t)2+4(4+12t)=-18t2+8.…………………5分∴EG=-18t2+8-(8-t)=-18t2+t.∵-18<0,∴当t=4时,线段EG最长为2.…………………7分②共有三个时刻.…………………8分t1=163,t2=4013,t3=8525.…………………11分【004】(1)解:由28033x,得4xA.点坐标为40,.由2160x,得8xB.点坐标为80,.∴8412AB.(2分)由2833216yxyx,.解得56xy,.∴C点的坐标为56,.(3分)∴111263622ABCCSABy△·.(4分)(2)解:∵点D在1l上且2888833DBDxxy,.∴D点坐标为88,.(5分)又∵点E在2l上且821684EDEEyyxx,..∴E点坐标为48,.(6分)∴8448OEEF,.(7分)(3)解法一:①当03t≤时,如图1,矩形DEFG与ABC△重叠部分为五边形CHFGR(0t时,为四边形CHFG).过C作CMAB于M,则RtRtRGBCMB△∽△.ADBEORFxyy1ly2lM(图3)GCADBEOCFxyy1ly2lG(图1)RMADBEOCFxyy1ly2lG(图2)RM∴BGRGBMCM,即36tRG,∴2RGt.RtRtAFHAMC△∽△,∴11236288223ABCBRGAFHSSSStttt△△△.即241644333Stt.(10分)【005】(1)如图1,过点E作EGBC于点G.·····················1分∵E为AB的中点,∴122BEAB.在RtEBG△中,60B∠,∴30BEG∠.···············2分∴22112132BGBEEG,.即点E到BC的距离为3.·················································3分(2)①当点N在线段AD上运动时,PMN△的形状不发生改变.∵PMEFEGEF,,∴PMEG∥.∵EFBC∥,∴EPGM,3PMEG.同理4MNAB.············································································································4分如图2,过点P作PHMN于H,∵MNAB∥,∴6030NMCBPMH∠∠,∠.∴1322PHPM.∴3cos302MHPM.则35422NHMNMH.在RtPNH△中,222253722PNNHPH.∴PMN△的周长=374PMPNMN.···················································6分②当点N在线段DC上运动时,PMN△的形状发生改变,但MNC△恒为等边三角形.当PMPN时,如图3,作PRMN于R,则MRNR.类似①,32MR.∴23MNMR.··············································································································7分图1ADEBFCG图2ADEBFCPNMGH∵MNC△是等边三角形,∴3MCMN.此时,6132xEPGMBCBGMC.···············································8分当MPMN时,如图4,这时3MCMNMP.此时,61353xEPGM.当NPNM时,如图5,30NPMPMN∠∠.则120PMN∠,又60MNC∠,∴180PNMMNC∠∠.因此点P与F重合,PMC△为直角三角形.∴tan301MCPM.此时,6114xEPGM.综上所述,当2x或4或53时,PMN△为等腰三角形.【006】解:(1)OC=1,所以,q=-1,又由面积知0.5OC×AB=45,得AB=52,设A(a,0),B(b,0)AB=ba=2()4abab=52,解得p=32,但p0,所以p=32。所以解析式为:2312yxx(2)令y=0,解方程得23102xx,得121,22xx,所以A(12,0),B(2,0),在直角三角形AOC中可求得AC=52,同样可求得BC=5,显然AC2+BC2=AB2,得△ABC是直角三角形。AB为斜边,所以外接圆的直径为AB=52,所以5544m。(3)存在,AC⊥BC,①若以AC为底边,则BD//AC,易求AC的解析式为y=-2x-1,可设BD的解析式为y=-2x+b,把B(2,0)代入得BD解析式为y=-2x+4,解方程组231224yxxyx得D(52,9)②若以BC为底边,则BC//AD,易求BC的解析式为y=0.5x-1,可设AD的解析式为y=0.5x+b,把图3ADEBFCPNM图4ADEBFCPMN图5ADEBF(P)CMNGGRGA(12,0)代入得AD解析式为y=0.5x+0.25,解方程组23120.50.25yxxyx得D(53,22)综上,所以存在两点:(52,9)或(53,22)。【007】【008】证明:(1)∵∠ABC=90°,BD⊥EC,∴∠1与∠3互余,∠2与∠3互余,∴∠1=∠2…………………………………………………1分∵∠ABC=∠DAB=90°,AB=AC∴△BAD≌△CBE…………………………………………2分∴AD=BE……………………………………………………3分(2)∵E是AB中点,∴EB=EA由(1)AD=BE得:AE=AD……………………………5分∵AD∥BC∴∠7=∠ACB=45°∵∠6=45°∴∠6=∠7由等腰三角形的性质,得:EM=MD,AM⊥DE。即,AC是线段ED的垂直平分线。……………………7分(3)△DBC是等腰三角(CD=BD)……………………8分理由如下:由(2)得:CD=CE由(1)得:CE=BD∴CD=BD∴△DBC是等腰三角形。……………………………10分【009】解:(1)①ACx⊥轴,AEy⊥轴,四边形AEOC为矩形.BFx⊥轴,BDy⊥轴,四边形BDOF为矩形.ACx⊥轴,BDy⊥轴,四边形AEDKDOCKCFBK,,均为矩形.·············1分1111OCxACyxyk,,,11AEOCS

1 / 10
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功