如图,AO是边长为2的等边△ABC的高,点D是AO上的一个动点(点D不与点A、O重合),以CD为一边在AC下方作等边△CDE,连结BE并延长,交AC的延长线于点F.(1)求证:△ACD≌△BCE;(2)当△CEF为等腰三角形时:①求∠ACD的度数;②求△CEF的面积.如图,等边△ABC的边长为8,E是中线AD上一点,以CE为一边在CE下方作等边△CEF,连接BF并延长至点N,M为BN上一点,且CM=CN=5,则MN的长为__________.已知△ABC中,AB=2,AC=3,分别以AB、BC、AC为边向外作正方形,则图中阴影部分面积的最大值为_.请阅读下列材料:问题:如图1,△ABC中,∠ACB=90°,AC=BC,MN是过点A的直线,DB⊥MN于点D,联结CD.求证:BD+AD=2CD.小明的思考过程如下:要证BD+AD=2CD,需要将BD,AD转化到同一条直线上,可以在MN上截取AE=BD,ABC23ABCDEFMN并联结EC,可证△ACE和△BCD全等,得到CE=CD,且∠ACE=∠BCD,由此推出△CDE为等腰直角三角形,可知DE=2CD,于是结论得证.小聪的思考过程如下:要证BD+AD=2CD,需要构造以CD为腰的等腰直角三角形,可以过点C作CE⊥CD交MN于点E,可证△ACE和△BCD全等,得到CE=CD,且AE=BD,由此推出△CDE为等腰直角三角形,可知DE=2CD,于是结论得证.请你参考小明或小聪的思考过程解决下面的问题:(1)将图1中的直线MN绕点A旋转到图2和图3的两种位置时,其它条件不变,猜想BD,AD,CD之间的数量关系,并选择其中一个图形加以证明;(2)在直线MN绕点A旋转的过程中,当∠BCD=30°,BD=2时,CD=_____.如图,在等边△ABC中,点D在直线BC上,连接AD,作∠ADN=60°,直线DN交射线AB于点E,过点C作CF∥AB交直线DN于点F.(1)当点D在线段BC上,∠NDB为锐角时,如图①,求证:CF+BE=CD;(2)当点D在线段BC的延长线上,∠NDB为锐角时,如图②;当点D在线段CB的延长线上,∠NDB为钝角时,如图③,请分别写出线段CF,BE,CD之间的数量关系,不需要证明;(3)在(2)的条件下,若∠ADC=30°,S△ABC=4,则BE=______,CD=________