铵态氮测量方法(2mol•L-1KCl浸提—靛酚蓝比色法)1)方法原理2mol•L-1KCl溶液浸提土壤,把吸附在土壤胶体上的NH4+及水溶性NH4+浸提出来。土壤浸提液中的铵态氮在强碱性介质中与次氯酸盐和苯酚作用,生成水溶性染料靛酚蓝,溶液的颜色很稳定。在含氮0.05~0.5mol•L-1的范围内,吸光度与铵态氮含量成正比,可用比色法测定。2)试剂(1)2mol•L-1KCl溶液称取149.1g氯化钾(KCl,化学纯)溶于水中,稀释至1L。(2)苯酚溶液称取苯酚(C6H5OH,化学纯)10g和硝基铁氰化钠[Na2Fe(CN)5NO2H2O]100mg稀释至1L。此试剂不稳定,须贮于棕色瓶中,在4℃冰箱中保存。(3)次氯酸钠碱性溶液称取氢氧化钠(化学纯)10g、磷酸氢二钠(Na2HPO4•7H2O,化学纯)7.06g、磷酸钠(Na3PO4•12H2O,化学纯)31.8g和52.5g•L-1次氯酸钠(NaOCl,化学纯,即含10%有效氯的漂白粉溶液)5mL溶于水中,稀释至1L,贮于棕色瓶中,在4℃冰箱中保存。(4)掩蔽剂将400g•L-1的酒石酸钾钠(KNaC4H4O6•4H2O,化学纯)与100g•L-1的EDTA二钠盐溶液等体积混合。每100mL混合液中加入10mol•L-1氢氧化钠0.5mL。(5)2.5µg•mL–1铵态氮(NH4+—N)标准溶液称取干燥的硫酸铵[(NH4)2SO4,分析纯0.4717g溶于水中,洗入容量瓶后定容至1L,制备成含铵态氮(N)100µg•mL–1的贮存溶液;使用前将其加水稀释40倍,即配制成含铵态氮(N)2.5µg•mL–1的标准溶液备用。3)仪器与设备:往复式振荡机、分光光度计。4)分析步骤(1)浸提称取相当于10.00g干土的新鲜土样(若是风干土,过10号筛)准确到0.01g,置于150mL三角瓶中,加入氯化钾溶液100mL,塞紧塞子,在振荡机上振荡1h。取出静置,待土壤—氯化钾悬浊液澄清后,吸取一定量上层清液进行分析。如果不能在24h内进行,用滤纸过滤悬浊液,将滤液储存在冰箱中备用。(2)比色吸取土壤浸出液5mL(含NH4+—N2µg~25µg)放入50mL容量瓶中,用氯化钾溶液补充至10mL,然后加入苯酚溶液5mL和次氯酸钠碱性溶液5mL,摇匀。在20℃左右的室温下放置1h后(注1),加掩蔽剂1mL以溶解可能产生的沉淀物,然后用水定容至刻度。用1cm比色槽在625nm波长处(或红色滤光片)进行比色,读取吸光度。(3)工作曲线分别吸取0.00、2.00、4.00、6.00、8.00、10.00mLNH4+—N标准液于50mL容量瓶中,各加10mL氯化钠溶液,同(2)步骤进行比色测定。5)结果计算土壤中NH4+—(N)含量(mg•kg-1)=式中:ρ——显色液铵态氮的质量浓度(µg•mL–1);V——显色液的体积(mL);ts——分取倍数;m——样品质量(g)。6)注释注1.显色后在20℃左右放置1h,再加入掩蔽剂.过早加入会使显色反应很慢,蓝色偏弱;加入过晚,则生成的氢氧化物沉淀可能老化而不易溶解.硝态氮测定方法(双波长紫外分光光度法)实验原理:利用硝酸根离子在220nm处有较强的紫外吸收这一特性,定量分析了土壤浸提液中的NO3-.溶解的有机物在210nm和275nm处均有吸收,而NO3-在275nm处没有吸收,因此在275nm波长处做另一测量,以校正硝酸盐值.最低检出浓度0.004mg/kg,测定上限为4.000mg/kg,适合高浓度土样浸提液的高倍稀释.试剂:CaSO4(分析纯),量浓度为1mol/L的盐酸(优级纯)溶液,质量浓度为100μg/mL的硝酸盐氮标准贮备液,质量浓度为25μg/mL的硝酸盐氮标准使用液。实验方法标准曲线的绘制:分别取硝酸盐氮标准使用液0.0,0.5,1.0,2.0,3.0,4.0μg/mL置于50mL比色管中,各管中加入1.0mL1mol的盐酸溶液,摇匀,用紫外分光光度计在210nm和275nm处,用1cm石英比色皿测定吸光度.以ΔA=A210-kA275的计算方法求得校正吸光度.(系数k的确定方法分别准确移取10μg/mL硝酸盐氮使用液2.00mL、土壤浸提液2.00mL置于各自的50mL比色管中,用二次蒸馏水定容,摇匀,用1cm的石英比色皿,以二次蒸馏水作参比,在紫外-可见分光光度计上测定吸光值。土壤样品、硝酸盐氮在210nm处有最大吸收,在275nm处吸收较弱,选取210nm、275nm为测量波长和参比波长测定土壤中硝态氮,根据A210-KA275=0的公式进行计算,求得K的平均值。土壤样品测定:称取10.00g新鲜土样,分别置于150mL具塞三角瓶,在三角瓶内加0.2gCaSO4,加100mL二次蒸馏水,于振荡器上振荡15min,放置30min后,倾出上清液,用中速或慢速无氮定量滤纸过滤.吸取滤液50.00mL(视NO3-N的浓度而定)置于50mL比色管中,用水准确稀释至刻度,加1.0mL1mol的盐酸溶液,测量吸光度.结果计算:C=C0×V总×D×1000/M×103式中:c为NO3-N浓度(mg/kg);c0为由曲线查得测定液质量浓度(μg/mL);v总为比色测定液总体积(mL)此处为50ml;D为浸提液分取倍数,若不稀释D=1;M为试样质量(g).1000与103为单位换算数量级。根据氮肥中氮素化合物的形态将氮肥分为铵态氮肥、硝态氮肥、酰胺态氮肥和氰氨态氮肥。随着人们对硝态氮肥施用效果的肯定,近两年,肥料市场上掀起了一股硝基复合(混)肥的热潮,许多肥料厂家及商家对硝态氮肥发展前景十分看好。事实上,无论是铵态氮还是硝态氮都可以作为植物生长和高产的良好氮源,究竟哪种肥料施用效果好,有发展前景,需要根据作物、土壤、肥料的性状来确定,更需要深入解读植物吸收铵态、硝态两种形态氮素营养的生理性质。一、植物中氮素的主要来源植物可以利用的氮素形态主要是铵态氮、硝态氮,也能少量吸收一些简单的有机含氮化合物如氨基酸、酰胺(如尿素)等。空气中含有近79%的氮气,只有某些微生物(包括与高等植物共生的固氮微生物)才能利用,大多数植物没有这一本领。而植物吸收的氮素主要来自它们生存的介质——土壤。土壤本身存在的氮素并不多,而且土壤中的氮素并不能被植物全部利用,植物能利用的仅是其中一小部分,即土壤中存在的铵态、硝态氮,而一些有机氮素,如简单的氨基酸、酰胺等也能被作物吸收利用,但其数量很少,又会被微生物转化成其他形态,难以在土壤长期存留;植物对其吸收也远不如无机氮容易,这些有机氮只能使植物存活,而不能使其丰产。二、形态不同,会产生不同的效应植物在吸收和代谢两种形态的氮素上存在不同。首先,铵态氮进入植物细胞后必须尽快与有机酸结合,形成氨基酸或酰胺,铵在植物体内的积累对植物毒害作用较大。硝态氮在进入植物体后一部分还原成铵态氮,并在细胞质中进行代谢,其余部分可“贮备”在细胞的液泡中,有时达到较高的浓度也不会对植物产生不良影响。因此单纯施用硝态氮肥一般不会产生不良效果,而单纯施用铵态氮则会发生铵盐毒害,在水培条件下更易发生。植物为什么不按其需要有计划地吸收,而要奢侈地吸收硝态氮,并“贮备”于液泡中呢?研究表明,硝态氮在营养器官生长时期大量累积是一切植物的共性,随着植物不断生长,体内的硝态氮含量越来越少。据了解,植物在营养生长阶段大量地吸收营养物质,一方面是为了满足当前生长的需要,另一方面是为了供给后期生长的需要。硝态氮在植物体中累积是植物的“贮备”措施,也是适应逆境的表现。营养生长期累积的硝态氮多,即使后期土壤供应养分不足,植物仍能很好地生长和发育;累积的硝态氮越多,后期生长发育越良好。另外,NO3-在液泡内还是重要的渗透调节物质,在植物体内碳水化合物合成减少,液泡内有机物含量下降时,NO3-可替代它们起渗透调节作用,这种调节需要的能量也低。虽然铵、硝态氮都是植物根系吸收的主要无机氮,但由于形态不同,也会对植物产生不同效应。硝态氮促进植物吸收阳离子,促进有机阴离子合成;而铵态氮则促进吸收阴离子,消耗有机酸。一般而言,旱地植物具有喜硝性,而水生植物或强酸性土壤上生长的植物则表现为喜铵性,这是作物适应土壤环境的结果。如玉米、小麦,对硝态氮偏好;在等氮量供应情况下,硝态氮的增产效果要更突出些。例如,蔬菜是一类对硝态氮非常偏爱的作物,在水培条件下表现更为明显。在水培试验中,只要营养液中加入硝态氮,没有铵态氮、尿素态氮,蔬菜正常生长。相反,没有硝态氮而加入尿素或任何铵态氮,蔬菜就生长不正常,甚至绝收。同时,烟草也是一种对硝态氮反应良好的作物,施用硝态氮不但能提高其产量,也能改善其品质。水稻终生以水为家,铵态氮一直被认为是其最好氮源。但最近的试验结果表明,水稻也喜欢硝态氮,后期补施一些硝态氮肥会有锦上添花之效,获得更高的产量。随着外界浓度升高,硝态氮作氮源的优势明显增加,铵态氮抑制植物生长的效应也更明显。三、硝态氮肥前景广阔氮肥按其中所含氮素养分的形态,可分为铵态氮肥(如碳酸氢铵)、硝态氮肥(如硝酸钾)、酰胺态氮肥(如尿素)和氰氨态氮肥(如石灰氮)。硝酸铵含有硝态氮和铵态氮各半,称为硝铵态氮肥。硝酸磷肥和硝酸磷钾肥等复合(混)肥料,其中的氮素养分也有硝态氮和铵态氮,连同硝酸铵在内,可统称为含硝态氮肥料。一般情况下,同时施用铵态氮和硝态氮肥,往往能获得作物较高的生长速率和产量。同时施用两种形态氮,植物更易调节细胞内pH值和通过消耗少量能量来贮存一部分氮。两者合适的比例取决于施用的总浓度:浓度低时,不同比例对植物生长影响不大,浓度高时,硝态氮作为主要氮源显示出优越性。植物中硝态氮、氨态氮、总氮测定方法的比较研究何文寿,李生秀,李辉桃.水稻对铵态氮和硝态氮吸收特性的研究[J].中国水稻科学,1998,12(4):249-252.陈效民,吴华山,孙静红.太湖地区农田土壤中铵态氮和硝态氮的时空变异[J].环境科学,2006,27(6):1217-1222.宋海星,李生秀.根系的吸收作用及土壤水分对硝态氮、铵态氮分布的影响[J].中国农业科学,2005,38(1):96-101.石英,沈其荣,茆泽圣,等.旱作水稻根际土壤铵态氮和硝态氮的时空变异[J].中国农业科学,2002,35(5):520-524.张亚丽,董园园,沈其荣,等.不同水稻品种对铵态氮和硝态氮吸收特性的研究[J].土壤学报,2004,41(6):918-923.田霄鸿,李生秀.几种蔬菜对硝态氮、铵态氮的相对吸收能力[J].植物营养与肥料学报,2000,6(2):194-201.马兴华,于振文,梁晓芳,等.施氮量和底施追施比例对土壤硝态氮和铵态氮含量时空变化的影响[J].应用生态学报,2006,17(4):630-634.余晓鹤,朱培立,黄东迈,等.土壤表层管理对稻田土壤氮矿化势,固氮强度及铵态氮的影响[J].中国农业科学,1991,24(1):73-79.邹春琴,王晓凤,张福锁.铵态氮抑制向日葵生长的作用机制初步探讨[J].植物营养与肥料学报,2004,10(1):82-85.李勇,周毅,郭世伟,等.铵态氮和硝态氮营养对水、旱稻根系形态及水分吸收的影响[J].中国水稻科学,2007,21(3):294-298.李世清,李生秀.淹水培养条件下铵态氮肥对土壤氮素的激发效应[J].植物营养与肥料学报,2001,7(4):361-367.梁东丽,方日尧,李生秀,等.硝、铵态氮肥对旱地土壤氧化亚氮排放的影响[J].干旱地区农业研究,2007,25(1):67-72.邹春琴,范晓云,石荣丽,等.铵态氮和硝态氮对旱稻、水稻生长及铁营养状况的影响[J].中国农业大学学报,2007,12(4):45-49.熊淑萍,姬兴杰,李春明,等.不同肥料处理对土壤铵态氮时空变化影响的研究[J].农业环境科学学报,2008,27(3):978-983.李永梅,杜彩琼,林春苗,等.铵态氮肥施入土壤中的转化[J].云南农业大学学报,2003,18(1):26-29.石正强.铵态氮和硝态氮营养与大豆幼苗的抗氰呼吸作用[J].植物生理学报,1997(2):204