统计学-贾俊平第四版第八章课后答案(目前最全)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

8.2一种元件,要求其使用寿命不得低于700小时。现从一批这种元件中随机抽取36件,测得其平均寿命为680小时。已知该元件寿命服从正态分布,=60小时,试在显著性水平0.05下确定这批元件是否合格。解:H0:μ≥700;H1:μ<700已知:=680=60由于n=36>30,大样本,因此检验统计量:==-2当α=0.05,查表得=1.645。因为z<-,故拒绝原假设,接受备择假设,说明这批产品不合格。8.38.4糖厂用自动打包机打包,每包标准重量是100千克。每天开工后需要检验一次打包机工作是否正常。某日开工后测得9包重量(单位:千克)如下:99.398.7100.5101.298.399.799.5102.1100.5已知包重服从正态分布,试检验该日打包机工作是否正常(a=0.05)?解:H0:μ=100;H1:μ≠100经计算得:=99.9778S=1.21221检验统计量:==-0.055当α=0.05,自由度n-1=9时,查表得=2.262。因为<,样本统计量落在接受区域,故接受原假设,拒绝备择假设,说明打包机工作正常。8.5某种大量生产的袋装食品,按规定不得少于250克。今从一批该食品中任意抽取50袋,发现有6袋低于250克。若规定不符合标准的比例超过5%就不得出厂,问该批食品能否出厂(a=0.05)?解:解:H0:π≤0.05;H1:π>0.05已知:p=6/50=0.12检验统计量:==2.271当α=0.05,查表得=1.645。因为>,样本统计量落在拒绝区域,故拒绝原假设,接受备择假设,说明该批食品不能出厂。8.68.7某种电子元件的寿命x(单位:小时)服从正态分布。现测得16只元件的寿命如下:159280101212224379179264222362168250149260485170问是否有理由认为元件的平均寿命显著地大于225小时(a=0.05)?解:H0:μ≤225;H1:μ>225经计算知:=241.5s=98.726检验统计量:==0.669当α=0.05,自由度n-1=15时,查表得=1.753。因为t<,样本统计量落在接受区域,故接受原假设,拒绝备择假设,说明元件寿命没有显著大于225小时。8.88.98.10装配一个部件时可以采用不同的方法,所关心的问题是哪一个方法的效率更高。劳动效率可以用平均装配时间反映。现从不同的装配方法中各抽取12件产品,记录各自的装配时间(单位:分钟)如下:甲方法:313429323538343029323126乙方法:262428293029322631293228两总体为正态总体,且方差相同。问两种方法的装配时间有无显著不同(a=0.05)?解:建立假设H0:μ1-μ2=0H1:μ1-μ2≠0总体正态,小样本抽样,方差未知,方差相等,检验统计量根据样本数据计算,得=12,=12,=31.75,=3.19446,=28.6667,=2.46183。==8.1326=2.648α=0.05时,临界点为==2.074,此题中>,故拒绝原假设,认为两种方法的装配时间有显著差异。8.11调查了339名50岁以上的人,其中205名吸烟者中有43个患慢性气管炎,在134名不吸烟者中有13人患慢性气管炎。调查数据能否支持“吸烟者容易患慢性气管炎”这种观点(a=0.05)?解:建立假设H0:π1≤π2;H1:π1>π2p1=43/205=0.2097n1=205p2=13/134=0.097n2=134检验统计量==3当α=0.05,查表得=1.645。因为>,拒绝原假设,说明吸烟者容易患慢性气管炎。8.12为了控制贷款规模,某商业银行有个内部要求,平均每项贷款数额不能超过60万元。随着经济的发展,贷款规模有增大的趋势。银行经理想了解在同样项目条件下,贷款的平均规模是否明显地超过60万元,故一个n=144的随机样本被抽出,测得=68.1万元,s=45。用a=0.01的显著性水平,采用p值进行检验。解:H0:μ≤60;H1:μ>60已知:=68.1s=45由于n=144>30,大样本,因此检验统计量:==2.16由于>μ,因此P值=P(z≥2.16)=1-,查表的=0.9846,P值=0.0154由于P>α=0.01,故不能拒绝原假设,说明贷款的平均规模没有明显地超过60万元。8.13有一种理论认为服用阿司匹林有助于减少心脏病的发生,为了进行验证,研究人员把自愿参与实验的22000人随机平均分成两组,一组人员每星期服用三次阿司匹林(样本1),另一组人员在相同的时间服用安慰剂(样本2)持续3年之后进行检测,样本1中有104人患心脏病,样本2中有189人患心脏病。以a=0.05的显著性水平检验服用阿司匹林是否可以降低心脏病发生率。解:建立假设H0:π1≥π2;H1:π1<π2p1=104/11000=0.00945n1=11000p2=189/11000=0.01718n2=11000检验统计量==-5当α=0.05,查表得=1.645。因为<-,拒绝原假设,说明用阿司匹林可以降低心脏病发生率。8.148.15有人说在大学中男生的学习成绩比女生的学习成绩好。现从一个学校中随机抽取了25名男生和16名女生,对他们进行了同样题目的测试。测试结果表明,男生的平均成绩为82分,方差为56分,女生的平均成绩为78分,方差为49分。假设显著性水平α=0.02,从上述数据中能得到什么结论?解:首先进行方差是否相等的检验:建立假设H0:=;H1:≠n1=25,=56,n2=16,=49==1.143当α=0.02时,=3.294,=0.346。由于<F<,检验统计量的值落在接受域中,所以接受原假设,说明总体方差无显著差异。检验均值差:建立假设H0:μ1-μ2≤0H1:μ1-μ2>0总体正态,小样本抽样,方差未知,方差相等,检验统计量根据样本数据计算,得=25,=16,=82,=56,=78,=49=53.308=1.711=0.02时,临界点为==2.125,t<,故不能拒绝原假设,不能认为大学中男生的学习成绩比女生的学习成绩好。

1 / 5
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功