高考必考题型复习-用样本估计总体

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第38练用样本估计总体[题型分析·高考展望]用样本估计总体在高考中也是热点部分,考查形式主要是选择题、填空题或是与概率结合的综合性解答题,重点是频率分布直方图以及数字特征,属于比较简单的题目.体验高考1.(2015·湖南)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示:13003456688891411122233445556678150122333若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是()A.3B.4C.5D.6答案B解析由题意知,将1~35号分成7组,每组5名运动员,成绩落在区间[139,151]的运动员共有4组,故由系统抽样法知,共抽取4名.选B.2.(2015·课标全国Ⅱ)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关答案D解析从2006年起,将每年的二氧化硫排放量与前一年作差比较,得到2008年二氧化硫排放量与2007年排放量的差最大,A选项正确;2007年二氧化硫排放量较2006年降低了很多,B选项正确;虽然2011年二氧化硫排放量较2010年多一些,但自2006年以来,整体呈递减趋势,即C选项正确;自2006年以来我国二氧化硫年排放量与年份负相关,D选项错误.故选D.3.(2016·课标全国丙)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃.下面叙述不正确的是()A.各月的平均最低气温都在0℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20℃的月份有5个答案D解析由题意知,平均最高气温高于20℃的有六月,七月,八月,故选D.4.(2016·山东)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据频率分布直方图知,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56B.60C.120D.140答案D解析由题图知,组距为2.5,故每周的自习时间不少于22.5小时的频率为(0.16+0.08+0.04)×2.5=0.7,∴这200名学生中每周的自习时间不少于22.5小时的人数是200×0.7=140,故选D.5.(2015·湖北)某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.(1)直方图中的a=________;(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为________.答案(1)3(2)6000解析(1)由频率分布直方图及频率和等于1可得0.2×0.1+0.8×0.1+1.5×0.1+2×0.1+2.5×0.1+a×0.1=1,解得a=3.(2)消费金额在区间[0.5,0.9]内频率为0.2×0.1+0.8×0.1+2×0.1+3×0.1=0.6,所以消费金额在区间[0.5,0.9]内的购物者的人数为0.6×10000=6000.高考必会题型题型一频率分布直方图的应用例1(2015·广东)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?解(1)由(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1,得x=0.0075,所以直方图中x的值是0.0075.(2)月平均用电量的众数是220+2402=230.因为(0.002+0.0095+0.011)×20=0.450.5,所以月平均用电量的中位数在[220,240)内,设中位数为a,由(0.002+0.0095+0.011)×20+0.0125×(a-220)=0.5,得a=224,所以月平均用电量的中位数是224.(3)月平均用电量为[220,240)的用户有0.0125×20×100=25(户),月平均用电量为[240,260)的用户有0.0075×20×100=15(户),月平均用电量为[260,280)的用户有0.005×20×100=10(户),月平均用电量为[280,300]的用户有0.0025×20×100=5(户),抽取比例=1125+15+10+5=15,所以月平均用电量在[220,240)的用户中应抽取25×15=5(户).点评利用频率分布直方图估计样本的数字特征(1)中位数:在频率分布直方图中,中位数左边和右边的直方图的面积相等,由此可以估计中位数的值.(2)平均数:平均数是频率分布直方图的“重心”,等于图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.(3)众数:在频率分布直方图中,众数是最高的矩形底边的中点的横坐标.变式训练1(2016·课标全国乙)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图.记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.(1)若n=19,求y与x的函数解析式;(2)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;(3)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?解(1)当x≤19时,y=3800;当x19时,y=3800+500(x-19)=500x-5700.所以y与x的函数解析式为y=3800,x≤19,500x-5700,x19(x∈N).(2)由柱状图知,需更换的零件数不大于18的频率为0.46,不大于19的频率为0.7,故n的最小值为19.(3)若每台机器在购机的同时都购买19个易损零件,则这100台机器中有70台在购买易损零件上的费用为3800,20台的费用为4300,10台的费用为4800,因此这100台机器在购买易损零件上所需费用的平均数为1100(3800×70+4300×20+4800×10)=4000,若每台机器在购机同时都购买20个易损零件,则这100台机器中有90台在购买易损零件上的费用为4000,10台的费用为4500,因此这100台机器在购买易损零件上所需费用的平均数为1100(4000×90+4500×10)=4050.比较两个平均数可知,购买1台机器的同时应购买19个易损零件.题型二茎叶图的应用例2(1)为了检查某高三毕业班学生的体重状况,从该班随机抽取了10位学生进行称重,如图为10位学生体重的茎叶图,其中图中左边是体重的十位数字,右边是个位数字,则这10位学生体重的平均数与中位数之差为()A.0.1B.0.2C.0.3D.0.4(2)在“某市中学生歌手大赛”比赛现场上七位评委为某选手打出的分数的茎叶图如图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为()A.5和1.6B.85和1.6C.85和0.4D.5和0.4答案(1)C(2)B解析(1)平均数为x=54.8,中位数为12(53+56)=54.5,∴这10位学生体重的平均数与中位数之差为:54.8-54.5=0.3.故选C.(2)x=15(4+4+4+6+7)+80=85,所以s2=15[3(84-85)2+(86-85)2+(87-85)2]=1.6,故选B.点评由于茎叶图完全反映了所有的原始数据,解决由茎叶图给出的统计图表试题时,就要充分使用这个图表提供的数据进行相关的计算或者是对某些问题作出判断,这类试题往往伴随着对数据组的平均值或者是方差的计算等.变式训练2(1)某公司将职员每月的工作业绩用1~30的自然数表示,甲、乙两职员在2010年1~8月份的工作业绩的茎叶图如图,则下列说法正确的是()A.两职员的平均业绩相同,甲职员的业绩比乙职员的业绩稳定B.两职员的平均业绩不同,甲职员的业绩比乙职员的业绩稳定C.两职员的平均业绩相同,乙职员的业绩比甲职员的业绩稳定D.两职员的平均业绩不同,乙职员的业绩比甲职员的业绩稳定(2)如图为甲、乙两名篮球运动员每场比赛得分情况的茎叶图,则甲和乙得分的中位数的和是()A.56B.57C.58D.59答案(1)C(2)B解析(1)由茎叶图可得:x甲=18(12+15+18+20+20+22+25+28)=20,x乙=18(14+15+17+19+21+23+25+26)=20,s2甲=18(82+52+22+0+0+22+52+82)=934,s2甲=18(62+52+32+1+1+32+52+62)=714,由平均数和方差可知,两职员的平均业绩相同,乙职员的业绩比甲职员的业绩稳定.(2)由茎叶图知,甲共13个数据,中间的一个是32,乙共11个数据,中间的一个是25,所以甲和乙得分的中位数的和为57,故选B.题型三用样本的数字特征估计总体的数字特征例3(1)一组数据的平均数是2.8,方差是3.6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是()A.57.2,3.6B.57.2,56.4C.62.8,63.6D.62.8,3.6(2)某篮球队甲、乙两名运动员练习罚球,每人练习10组,每组罚球40个,命中个数的茎叶图如图,则下列结论中错误的是________.(填序号)①甲的极差是29;②乙的众数是21;③甲罚球命中率比乙高;④甲的中位数是24.答案(1)D(2)④解析(1)设这组数据分别为x1,x2,…,xn,则x=1n(x1+x2+…+xn),方差为s2=1n[(x1-x)2+…+(xn-x)2],每一组数据都加60后,x′=1n(x1+x2+…+xn+60n)=x+60=62.8,方差s′2=1n[(x1+60-62.8)2+…+(xn+60-62.8)2]=s2=3.6.(2)由茎叶图知,甲的最大值为37,最小值为8,所以甲的极差为29,故①对;乙的数据中出现次数最多的是21,所以②对;甲的命中个数集中在20,而乙的命中个数集中在10和20,所以甲罚球命中率大,故③对;甲中间的两个数为22,24,所以甲的中位数为22+242=23,故④不对.故答案应填④.点评平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数描述其集中趋势,方差和标准差描述其波动大小.变式训练3甲、乙二人参加某体育项目训练,近期的五次测试成绩得分情况如图.(1)分别求出两人得分的平均数与方差;(2)根据图和上面算得的结果,对两人的训练成绩作出评价.解(1)由题图象可得甲、乙两人五次测试的成绩分别为甲:10分,13分,12分,14分,16

1 / 12
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功