12233课题:五年级最大公约数与最小公倍数应用基础训练1、求下列各数的最大公约数和最小公倍数。(1)36和48(2)24、36和482、已知甲数=2×3×5,乙数=2×3×7,求甲乙两数的最大公约数和最小公倍数。3、把1,2,3,4,5,6,7,8,9这九个数分别填在下面的九个方框里,使以下等式成立:□□×□□=□□×□□□=36344、将下列八个数平均分成两组,使这两组数的乘积相等。12,18,33,35,36,65,77,104.应用题1、有四个人,他们的年龄一个比一个大一岁,他们的年龄的乘积等于43680,则这四个人中年龄最小的是几岁?2、王老师带学生去植树,学生恰好平均分成三组,如果他们共植树638棵,且老师和学生植树棵数相同,问一共有多少名学生?每人植树多少棵?(全班人数接近60人)3、2160与一个自然数A相乘的积恰好是某一个自然数的平方,问A最小是多少?当A最小时,这个自然数的平方是多少?24、有三个自然数A,B,C,已知A×B=36,B×C=108,A×C=48,则这三个自然数的和是多少?5、电子钟每9分钟亮一次灯,整点响铃,12点既亮灯又响铃以后,下次在几点既响铃又亮灯?6、有36支铅笔和40本练习本,平均奖给若干个三好学生,结果铅笔多出一支,练习本差2本,获奖的学生有多少人?7、某班学生自制学具,把长144厘米、宽48厘米、高32厘米的长方体木料,锯成尽可能大的同样大小的正方体木块,求正方体木块的棱长和块数(锯完之后原木料没有剩余)。8、某班学生人数在60---70之间,如果分成每8人一个小组,那么有一个小组多5人;如果分成每12人一个小组,那么有3个小组各少一人。求这个班的学生人数。思考题:有若干名学生上体育课,内容是学习篮球、排球和足球。规定每二人合用一只排球,每三人合用一只足球,每四人合用一只篮球,共用了26只球。问有多少名学生。3提高训练(1)364和3003的最大公约数是(),最小公倍数是()。(2)一盒糖果可以平均分给2,3,4,5或6个小朋友,这盒糖果最少有()块(3)两个数的最小公倍数是180,最大公约数是30,已知其中一个数是90,另一个数是()。(4)两个整数的最小公倍数是72,最大公约数是12,且小数不能整除大数,这两个数是()和()。(5)把能同时被2、5、7整除的三位数,按由小到大的顺序排成一列,中间的一个数是()。(6)一个数除以7余数是2,如果将被除数扩大9倍,那么余数是()。(7)已知两个自然数的和为224,它们的最大公约数是28,这两个数是()或是()。(8)甲数除以18商196余7,乙数除以18商375余9,甲、乙两数的和除以18,商是()余()。(9)一筐苹果分给几个人,若分给5个人还剩3个,分给6个人还剩4个,分给9个人则有2人各少1个,这筐苹果至少有()个。(10)用96朵红花和72朵黄花扎成花束,如果每束红花朵数相同黄花朵数也相同,每束花最少有()朵(11)有一类自然数,其中每一个数与5的和都是9的倍数,与5的差都是7的倍数,按从小到大的顺序写出这类自然数的前三个。这三个数是()。(12)用一个自然数去除1850余2,除1330余70,除1552余40,这个数是()。(13)已知两个数的积是3174,它们的最大公约数是23,这两个数是()或是()。(14)甲、乙两数的最小公倍数除以它们的最大公约数,商是12,如果甲、乙两数的差是18,那么甲数是(),乙数是()。应用题1.甲、乙、丙三班同学去公园划船,甲班49人,乙班56人,丙班42人,把各班同学分别分成小组,分乘若干条小船,使每条船上人数相等,最少要有多少条船?2.三个朋友每人隔不同的天数到图书馆一次,甲3天一次,乙4天一次,丙5天一次,上次三个人是星期二在图书馆相逢,至少还要过多少天才能在图书馆重逢?重逢时是星期几?3.有两根木料,一根长2015毫米,另一根长755毫米,要把它们锯成同样长的小段,不许有剩余,但每锯一次要损耗1毫米的木料,每小段木料最长可以是多少毫米?4课后作业1、求下列各数的最大公约数和最小公倍数。(1)52和78(2)30、45和602、47个苹果,31个梨,63个桔子分给尽可能多的人,每人分得三种相同个数的水果,结果苹果剩下2个,梨剩下1个,桔子剩下3个,问每个人各分得了几个苹果、梨、桔子?3、长方形砖长42厘米,宽26厘米,用这种砖铺一块正方形地,至少需要多少块砖?4、动物园的饲养员给三群猴子分花生。如果只分给第一群,则每只猴子可得12粒;如果只分给第二群,则每只猴子可得15粒;如果只分给第三群,则每只猴子可得20粒。那么,如果平均分给三群猴子,则每只猴子分得多少粒?5.幼儿园买来桃93个,杏123个,桔子150个,分给大班的小朋友,每人要分得一样多,结果桃、李各剩下3个,桔子恰好分完。大班小朋友最多有几个人?每人分到几个桃?几个杏?几个桔?6.如果我们按每一行十个人排队,那么就有一个人剩下来,如果我们按每行九个人排队,还是有一个人剩下来,如果我们按每一行是八个、七个、六个、五个、四个、三个、两个人排队,都有一个人剩下来,而且我们的总数少于5000人,试问我们一共是几个人。