中国微电子技术发展现状及发展趋势

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

中国微电子技术发展现状及发展趋势论文概要:介绍了中国微电子技术的发展现状,并阐述对微电子技术发展趋势的展望。针对日前世界局势紧张,战争不断的状况,本文在最后浅析了微电子技术在未来轻兵器上的应用。【关键词】:微电子技术生产微电子产品技术发展政策微电子产业统计指标体系发展与应用制造企业数据采集高技术产业政策研究一.我国微电子技术发展状况1956年7月,国务院科学专业化规划委员会正式成立,组织数百各科学家和技术专家编制了十二年(1965—1967年)科学技术远景规划,这个著名的《十二年规划》中,明确地把发展计算机技术、半导体技术、无线电电子学、自动化和遥感技术放到战略的重点上,我国半导体晶体管是1957年研制成功的,1960年开始形成生产;集成电路始于1962年,于1968年形成生产;大规模集成电路始于70年代初,80年代初形成生产。但是,同世界先进水平相比较,我们还存在较大的差距。在生产规模上,目前我国集成电路工业还没有实现高技术、低价格的工业化大生产,而国外的发展却很快,美国IBM公司在日本的野洲工厂生产64K动态存贮器,1983年秋正式投产后,每日处理硅片几万片,月产量为上百万块电路,生产设备投资约8000万美元。日本三菱电机公司于1981年2月开始动土兴建工厂,1984年投产,计划生产64K动态存贮器,月产300万块,总投资约为1.2亿美元。此外,在美国和日本,把半导体研究成果形成工业化生产的周期也比较短。在美国和日本,出现晶体观后,形成工业生产能力是3年;出现集成电路后形成工业生产能力是1—3年;出现大规模集成电路后形成工业生产能力是1—2年;出现超大规模集成电路后形成工业生产能力是4年。我国半导体集成电路工业长期以来也是停留在手工业和实验室的生产方式上。近几年引进了一些生产线,个别单位才开始有些改观,但与国外的差距还是相当大的。从产品的产值和产量方面来看,目前,全世界半导体与微电子市场为美国和日本所垄断。这两国集成电路的产量约占体世界产量的百分之九十,早期是美国独占市场,而日本后起直追。1975年美国的半导体与集成电路的产值是66亿美元,分离器件产量为110多亿只,集成路为50多亿块;日本的半导体与集成电路的产值是30亿美元,分离器件产量为122亿只,集成电路为17亿块。1982年美国的半导体与集成电路的产值为75美元,分离器件产量为260多亿只,集成电路为90多亿块;日本的半导体与集成电路的产值为38亿美元,分离器件产量300多亿只,集成电路40多亿块。我国集成电路自1976年至1982年,产量一直在1200万块至3000万块之间波动,没有大幅度的提高,1982年我国半导体与集成电路的产值是0.75亿美元,产量为1313万块,相当于美国1965年和日本1968年的水平。(1965年美国的半导体与集成电路的产值是0.79亿美元,产量为950万块;1968年日本的半导体与集成电路的产值为0.47亿美元,产量为1988万块)。在价格、成本、劳动生产率、成品率等方面,差距比几十倍还大得多,并且我国小规模集成电路的成品率比国外低1—3倍;中规模集成电路的成品率比国外低3—7倍。目前中、小规模集成电路成品率比日本1969年的水平还低。从经济效益和原材料消耗方面考虑,国外一般认为,进入工业生产的中、小规模集成电路成品率不应低于50%,大规模集成电路成品率不应低于30%。我国集成电路成品率的进一步提高,已迫在眉睫,这是使我国集成电路降低成本,进入工业化大生产、提高企业经济效益带有根本性的一环。从价格上来看,集成电路价格是当前我国集成电路工业中的重大问题,产品优质价廉,市场才有立足之地。我国半导体集成电路价格,长期以来,降价较缓慢,近两三年来,集成电路的平均价格为每块10元左右,这种价格水平均相当于美国和日本1965年—1967年的水平。近几年,我国微电子工业得到了进一步发展。国务院批准了《关于我国电子和信息产业发展战略的报告》,明确提出以集成电路、计算机、通信和软件为电了信息产业发展的重点,要求电子与信息产业,在“七五”期间实现两个转变:第一是服务重点转到为发展国民经济、四化建设和整个社会生活服务的轨道上来;第二是电子工业的发展要转移到以微电子技术为基础、以计算机和通信装备为主体的轨道上来。这些重大措施正推动着我国微电子学的研究和微电子技术的发展。二.微电子技术发展趋势微电子技术是当代发展最快的技术之一,是电子信息产业的基础和心脏。微电子技术的发展,大大推动了航天航空技术、遥测传感技术、通讯技术、计算机技术、网络技术及家用电器产业的迅猛发展。微电子技术的发展和应用,几乎使现代战争成为信息战、电子战。在我国,已经把电子信息产业列为国民经济的支拄性产业。如今,微电子技术已成为衡量一个国家科学技术进步和综合国力的重要标志。集成电路(IC)是微电子技术的核心,是电子工业的“粮食”。集成电路已发展到超大规模和甚大规模、深亚微米(0.25μm)精度和可集成数百万晶体管的水平,现在已把整个电子系统集成在一个芯片上。人们认为:微电子技术的发展和应用使全球发生了第三次工业革命。1965年,Intel公司创始人之一的董事长GordenMoore在研究存贮器芯片上晶体管增长数的时间关系时发现,每过18~24个月,芯片集成度提高一倍。这一关系被称为穆尔定律(MooresLaw),一直沿用至今。穆尔定律受两个因素制约,首先是事业的限制(businessLimitations)。随着芯片集成度的提高,生产成本几乎呈指数增长。其次是物理限制(PhysicalLimitations)。当芯片设计及工艺进入到原子级时就会出现问题。DRAM的生产设备每更新一代,投资费用将增加1.7倍,被称为V3法则。目前建设一条月产5000万块16MDRAM的生产线,至少需要10亿美元。据此,64M位的生产线就要17亿美元,256M位的生产线需要29亿美元,1G位生产线需要将近50亿美元。至于物理限制,人们普遍认为,电路线宽达到0.05μm时,制作器件就会碰到严重问题。从集成电路的发展看,每前进一步,线宽将乘上一个0.7的常数。即:如果把0.25μm看作下一代技术,那么几年后又一代新产品将达到0.18μm(0.25μm×0.7),再过几年则会达到0.13μm。依次类推,这样再经过两三代,集成电路即将到达0.05μm。每一代大约需要经过3年左右。三.微电子技术的发展几十年来集成电路(IC)技术一直以极高的速度发展。如前文中提到的,著名的穆尔(Moore)定则指出,IC的集成度(每个微电子芯片上集成的器件数),每3年左右为一代,每代翻两番。对应于IC制作工艺中的特征线宽则每代缩小30%。根据按比例缩小原理(ScalingDownPrinciple),特征线条越窄,IC的工作速度越快,单元功能消耗的功率越低。所以,IC的每一代发展不仅使集成度提高,同时也使其性能(速度、功耗、可靠性等)大大改善。与IC加工精度提高的同时,加工的硅圆片的尺寸却在不断增大,生产硅片的批量也不断提高。以上这些导致了微电子产品发展的一种奇妙景观:在集成度一代代提高的同时,芯片的性能、功能不断增强,而价格却不断下跌。这一现象的深远意义在于,随着微电子芯片技术的快速发展,一切微电子产品(计算机、通信及消费类产品等)也加速更新、换代;不仅新一代产品性能、功能大大超过前一代,而且价格的越来越便宜又为电子信息技术的不断推进及其迅速推广应用到各个领域创造了条件,导致了人类信息化社会的到来。由于集成电路栅长度的减小和集成度的增大,因此必须发展相应的制造技术,即光刻技术、氧化和扩散技术、多层布线技术和电容器材料技术。①光刻技术利用波长436nm光线,形成亚微米尺寸图形,制造出集成度1M位和4M位的DRAM。i射线(波长365nm)曝光设备问世后,可形成半微米尺寸和深亚微米尺寸的图形,制造出16M位和64M位的DRAM。目前,采用KrF准分子激光器的光刻设备已经投入实用,可以形成四分之一微米尺寸的图形,制造出64M位DRAM。采用波长更短的ArF激光器的光刻设备,有可能在21世纪初投入实用。当然,为了实现这一目标,必须开发出适用的掩膜形成技术和光刻胶材料。X射线光刻设备的研制开发工作,已经进行了相当的时间,电子束曝光技术和3nm真空紫外线曝光技术,也在积极开发之中,哪一种技术将会率先投入实用并成为下一阶段的主流技术,现在还难以预料。②蚀刻技术在高密度集成电路制造过程中,氧化膜、多晶硅与布线金属的蚀刻技术,随着特征尺寸的不断缩小将变得越来越困难。显然,如果能够研制出一种可以产生均匀的平面状高密度等离子源的技术,就会获得更为理想的蚀刻效果。利用CER(电子回旋共振)等离子源或ICP(电感耦合等离子)高密度等离子源,并同特殊气体(如HBr等)及静电卡盘(用于精密温度控制)技术相结合,就可以满足上述电路蚀刻工艺的要求。③扩散氧化技术要想以低成本保证晶体的良好质量,必须采用外延生长技术。其理由是,同在晶体制作上下工夫保证质量所需要花费的成本相比,外延生长技术的成本低得多。离子注入的技术水平已经有很大提高,可以将MeV(兆电子伏特)的高能量离子注入到晶体内部达几微米深度。迄今采用的气体扩散法,需要在高温中长时间地扩散杂质才能形成扩散层。而现在,利用离子注入技术,可以分别地将杂质注入到任意位置,再经一次低温热处理,就可以获得同样的结果。同时,低能量离子注入技术也取得很大进展,可以形成深度小于0.1μm的浅扩散层,而且精度相当高。另外,斜方向离子注入技术也大有进展,可以在任何位置注入杂质,从而可以在低温条件下按照设计要求,完成决定晶体管性能的杂质扩散工序作业。用固相扩散法制造源漏极浅结极为有效,已经获得35nm的浅结。④多层布线技术把电阻小于铝的铜,作为下一代布线材料正在引起人们的关注。美国半导体工业协会(SIA)已经将“以铜代替铝”列入其发展规划,并制定出相应的目标和技术标准。铜布线采用镶嵌方法制作,并利用CMP(化学机械抛光)技术进行研磨,布线形成则使用半导体级电镀技术。铜容易在绝缘膜中扩散,所以,在采用铜布线时,需要同时采用能够防止铜扩散的势垒金属技术。用离子束喷射法替代常用的真空溅射法,将金属喷射到硅圆片表面,这种方法使硅圆片不需要金属化的一侧带负电荷,然后让金属离子带正电荷,在负电荷吸引下,金属粒子沉积在硅圆片表面,形成十分均匀的金属薄膜。预计离子喷射法三年后可达到实用。在高速电路的布线中,必须同时形成低介电系数的层间膜。氧化膜的介电系数为4.0,添加氟(F)的氧化膜,其介电系数现在可以达到3.6,利用高密度等离子CVD(化学气相淀积)技术可制作含氟的氧化膜。⑤电容器材料随着DRAM集成度的提高,电容器材料——氧化膜的厚度变得越来越薄。进入90年代以来,氮化硅膜技术不断改进,并改用立体的电容器结构,以确保所必需的电容值。但是,这种技术似乎已经接近其极限,今后有可能采用迄今没有用过的新材料,如氧化钽膜(Ta2O5)和高电容率材料(BST)等。四.微电子技术在未来轻兵器上的应用当今世界,高新技术的浪潮推动着世纪战车,正飞速驶入一个全新的时代。各类传统观念上的兵器在高技术的洗礼下,都产生了革命性的变化。在诸多高技术中,雄踞榜首的是微电子技术。微电子技术是使电子元器件和由它组成的电子设备微型化的技术,其核心是集成电路技术。先进的微电子技术在军事领域中的广泛应用打破了千百年形成的武器装备唯大、唯多和大规模破坏等传统观念,使武器系统小而轻,功耗低,可靠性高,作战效能和威力增强。如军用通信指挥系统,高空卫星侦察监视,海底导弹发射及海、陆、空各军兵种的配合与联络,靠的都是微电子技术。微电子技术在轻武器中的应用方兴未艾,有许多应用正在研制中,如数字地图计划:为提供士兵所需要的一切信息,可把天气数据、情报、敌友军的位置、空中成像等一切信息融合到一起,以数字方式存储,并通过无线计算机网络送到任何需要的地方,甚至是前线。若将这种数字地图直接接入武器,不仅可以大大提高武器的精度,而且能使后勤得到可靠保障。随着光学、电子、材料、机械等各方面技术的发展

1 / 5
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功